Models and Model Checking for Spatially-Varying Environmental Hazards and Decision Problems
空间变化环境危害和决策问题的模型和模型检查
基本信息
- 批准号:9708424
- 负责人:
- 金额:$ 22.71万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:1997
- 资助国家:美国
- 起止时间:1997-09-01 至 2001-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Decisions concerning public health and public expenditures must often be based on highly uncertain data; for example, consider the uneven quality of measurements of individual economic decisions and effects of public programs and policies. In the field of environmental policy, data such as pollutant measurements that are required for informed decisions are usually sparse, spatially dispersed, and subject to substantial measurement error. One response by regulators and other policy makers to the large uncertainties typical of environmental and other public decision problems has been the use of `conservative` (often inflated) estimates of exposure, risk, etc. However, the recognition that policy should be based on assessment of both likely costs and benefits has led to increased use of benefit-cost analysis in recent years. A key step forward that needs to be made, especially for spatially-varying environmental hazards, is to calibrate risk estimates: this means recommending different courses of actions and also different data-gathering strategies in different areas. In order to do this effectively, it is useful to spatially model the relevant exposures and risks. The goal of this project is to develop more reliable methods of models and model-checking for spatially-varying hazards, in settings with uncertainty (due to incomplete information) and also true underlying variability. In recent years, much progress has been made in the field of statistics in modeling complex data structures using Bayesian methods. Areas in which more progress needs to be made and on which the investigators plan to work include model fitting, computation, model checking, and display of inferences using graphs or maps. The investigators plan to particularly focus on the use of model-checking and graphical methods to build confidence in the results of the modeling fitting, so that individuals and policy-makers will have trustworthy tools to allow them to take better account of uncertainty and variability when making decisions. As an important example, the investigators propose to develop their model in the context of remediation of risks from home radon, based on a combined analysis of home radon data from many sources.
有关公共卫生和公共支出的决策通常必须基于高度不确定的数据;例如,考虑到个人经济决策的测量质量以及公共计划和政策的影响。 在环境政策领域,知情决策所需的污染物测量等数据通常稀疏、空间分散,而且测量误差很大。 管理者和其他决策者对环境和其他公共决策问题中典型的巨大不确定性的一种反应是对接触、风险等使用“保守”(往往是夸大的)估计。然而,由于认识到政策应基于对可能的成本和效益的评估,近年来越来越多地使用效益-成本分析。 需要向前迈出的一个关键步骤,特别是对于空间变化的环境危害,是校准风险估计:这意味着在不同地区建议不同的行动方针和不同的数据收集战略。 为了有效地做到这一点,对相关风险敞口和风险进行空间建模是有用的。 该项目的目标是在具有不确定性(由于信息不完整)和真正的潜在可变性的环境中,为空间变化的危害开发更可靠的模型和模型检查方法。 近年来,在统计学领域中,使用贝叶斯方法对复杂数据结构进行建模已经取得了很大的进展。 需要取得更多进展的领域以及研究人员计划开展的工作包括模型拟合,计算,模型检查以及使用图形或地图显示推论。 研究人员计划特别关注模型检查和图形方法的使用,以建立对建模拟合结果的信心,以便个人和政策制定者拥有值得信赖的工具,使他们能够在决策时更好地考虑不确定性和可变性。 作为一个重要的例子,研究人员建议开发他们的模型的背景下,从家庭氡的风险补救,家庭氡数据从许多来源的综合分析的基础上。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Andrew Gelman其他文献
C3(H<sub>2</sub>O) – Generation, quantitation, and marker of human disease
- DOI:
10.1016/j.molimm.2018.06.058 - 发表时间:
2018-10-01 - 期刊:
- 影响因子:
- 作者:
Michelle Elvington;M. Kathryn Liszewski;Hrishikesh Kulkarni;Andrew Gelman;Alfred Kim;John Atkinson - 通讯作者:
John Atkinson
A default prior distribution for logistic and other regression models ∗
逻辑和其他回归模型的默认先验分布 *
- DOI:
- 发表时间:
2002 - 期刊:
- 影响因子:0
- 作者:
Andrew Gelman;Aleks Jakulin;M. G. Pittau;Yu - 通讯作者:
Yu
An improved BISG for inferring race from surname and geolocation
一种改进的 BISG,用于根据姓氏和地理位置推断种族
- DOI:
10.48550/arxiv.2310.15097 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
P. Greengard;Andrew Gelman - 通讯作者:
Andrew Gelman
Ethics and Statistics: It's Too Hard to Publish Criticisms and Obtain Data for Republication
伦理与统计学:发表批评和获取重发表数据太难了
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
Andrew Gelman - 通讯作者:
Andrew Gelman
Community prevalence of SARS-CoV-2 in England during April to September 2020: Results from the ONS Coronavirus Infection Survey
2020 年 4 月至 9 月英格兰 SARS-CoV-2 社区流行情况:ONS 冠状病毒感染调查结果
- DOI:
10.1101/2020.10.26.20219428 - 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
K. Pouwels;T. House;E. Pritchard;J. Robotham;Paul J. Birrell;Andrew Gelman;K. Vihta;N. Bowers;Ian Boreham;Heledd Thomas;James W Lewis;Iain Bell;J. Bell;J. Newton;J. Farrar;I. Diamond;P. Benton;A. Walker - 通讯作者:
A. Walker
Andrew Gelman的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Andrew Gelman', 18)}}的其他基金
Scalable Bayesian regression: Analytical and numerical tools for efficient Bayesian analysis in the large data regime
可扩展贝叶斯回归:在大数据领域进行高效贝叶斯分析的分析和数值工具
- 批准号:
2311354 - 财政年份:2023
- 资助金额:
$ 22.71万 - 项目类别:
Standard Grant
RAPID: Flexible, Efficient, and Available Bayesian Computation for Epidemic Models
RAPID:灵活、高效、可用的流行病模型贝叶斯计算
- 批准号:
2055251 - 财政年份:2020
- 资助金额:
$ 22.71万 - 项目类别:
Standard Grant
Collaborative Research: PPoSS: Planning: Scalable Systems for Probabilistic Programming
协作研究:PPoSS:规划:概率编程的可扩展系统
- 批准号:
2029022 - 财政年份:2020
- 资助金额:
$ 22.71万 - 项目类别:
Standard Grant
RIDIR: Collaborative Research: Bayesian analytical tools to improve survey estimates for subpopulations and small areas
RIDIR:协作研究:贝叶斯分析工具,用于改进亚人群和小区域的调查估计
- 批准号:
1926578 - 财政年份:2019
- 资助金额:
$ 22.71万 - 项目类别:
Standard Grant
CI-SUSTAIN: Stan for the Long Run
CI-SUSTAIN:长远发展
- 批准号:
1730414 - 财政年份:2017
- 资助金额:
$ 22.71万 - 项目类别:
Standard Grant
Collaborative Research: Multilevel Regression and Poststratification: A Unified Framework for Survey Weighted Inference
协作研究:多级回归和后分层:调查加权推理的统一框架
- 批准号:
1534414 - 财政年份:2015
- 资助金额:
$ 22.71万 - 项目类别:
Standard Grant
CI-ADDO-NEW: Stan, Scalable Software for Bayesian Modeling
CI-ADDO-NEW:Stan,用于贝叶斯建模的可扩展软件
- 批准号:
1205516 - 财政年份:2012
- 资助金额:
$ 22.71万 - 项目类别:
Standard Grant
CMG: Reconstructing Climate from Tree Ring Data
CMG:从树木年轮数据重建气候
- 批准号:
0934516 - 财政年份:2009
- 资助金额:
$ 22.71万 - 项目类别:
Standard Grant
Design and Analysis of "How many X's do you know" surveys for the study of polarization in social networks
用于研究社交网络极化的“你知道多少个 X”调查的设计和分析
- 批准号:
0532231 - 财政年份:2005
- 资助金额:
$ 22.71万 - 项目类别:
Standard Grant
Multilevel Modeling for the Study of Public Opinion and Voting
用于民意和投票研究的多层次建模
- 批准号:
0318115 - 财政年份:2003
- 资助金额:
$ 22.71万 - 项目类别:
Continuing Grant
相似国自然基金
基于术中实时影像的SAM(Segment anything model)开发AI指导房间隔穿刺位置决策的增强现实模型
- 批准号:
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Development of a Linear Stochastic Model for Wind Field Reconstruction from Limited Measurement Data
- 批准号:
- 批准年份:2020
- 资助金额:40 万元
- 项目类别:
应用Agent-Based-Model研究围术期单剂量地塞米松对手术切口愈合的影响及机制
- 批准号:81771933
- 批准年份:2017
- 资助金额:50.0 万元
- 项目类别:面上项目
基于Multilevel Model的雷公藤多苷致育龄女性闭经预测模型研究
- 批准号:81503449
- 批准年份:2015
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
基于非齐性 Makov model 建立病证结合的绝经后骨质疏松症早期风险评估模型
- 批准号:30873339
- 批准年份:2008
- 资助金额:32.0 万元
- 项目类别:面上项目
相似海外基金
Development of model checking technology for dependable distributed systems
可靠分布式系统模型检测技术的开发
- 批准号:
23H03370 - 财政年份:2023
- 资助金额:
$ 22.71万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
A Tableau-based Approach to Model Checking Temporal Properties for Large-scale Systems
基于 Tableau 的大型系统时态属性模型检查方法
- 批准号:
23K19959 - 财政年份:2023
- 资助金额:
$ 22.71万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
Quantitative Model Checking and Synthesis
定量模型检验与综合
- 批准号:
2751001 - 财政年份:2022
- 资助金额:
$ 22.71万 - 项目类别:
Studentship
Vérification par model-checking et synthèse de contrôleur de systèmes temps réel complexes
模型检查和系统时间控制综合的验证
- 批准号:
RGPIN-2016-06393 - 财政年份:2021
- 资助金额:
$ 22.71万 - 项目类别:
Discovery Grants Program - Individual
Belief Ratio Approach of Model Checking for Right Censored Data
右删失数据模型检验的置信比法
- 批准号:
562116-2021 - 财政年份:2021
- 资助金额:
$ 22.71万 - 项目类别:
University Undergraduate Student Research Awards
Software model checking for real-time properties of embedded assembply program with interruptions
带有中断的嵌入式汇编程序实时特性的软件模型检查
- 批准号:
21K11824 - 财政年份:2021
- 资助金额:
$ 22.71万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
SHF: Small: Transforming Computer Architecture Evaluation with Statistical Model Checking
SHF:小型:通过统计模型检查转变计算机架构评估
- 批准号:
2133160 - 财政年份:2021
- 资助金额:
$ 22.71万 - 项目类别:
Standard Grant
Student Travel Support for Verification, Model Checking, and Abstract Interpretation (VMCAI) Winter School 2020
验证、模型检查和摘要解释 (VMCAI) 2020 年冬季学校学生旅行支持
- 批准号:
2004561 - 财政年份:2020
- 资助金额:
$ 22.71万 - 项目类别:
Standard Grant
SaTC: CORE: Small: Techniques for Software Model Checking of Hyperproperties
SaTC:核心:小型:超属性软件模型检查技术
- 批准号:
2100989 - 财政年份:2020
- 资助金额:
$ 22.71万 - 项目类别:
Standard Grant