Development of renormalization tools in non-unitary conformal field theory

非酉共形场论重整化工具的开发

基本信息

  • 批准号:
    529097-2018
  • 负责人:
  • 金额:
    $ 1.27万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Master's
  • 财政年份:
    2018
  • 资助国家:
    加拿大
  • 起止时间:
    2018-01-01 至 2019-12-31
  • 项目状态:
    已结题

项目摘要

No summary - Aucun sommaire
没有总结 - Aucun sommaire

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Gobeil, Thomas其他文献

Gobeil, Thomas的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Gobeil, Thomas', 18)}}的其他基金

No-hair in alternative gravity
替代重力下无毛发
  • 批准号:
    520895-2017
  • 财政年份:
    2017
  • 资助金额:
    $ 1.27万
  • 项目类别:
    University Undergraduate Student Research Awards
Effet des interactions dans un semi-métal de Weyl
韦尔半金属相互作用的效果
  • 批准号:
    502161-2016
  • 财政年份:
    2016
  • 资助金额:
    $ 1.27万
  • 项目类别:
    University Undergraduate Student Research Awards

相似国自然基金

各向同性淬致无序环境中层列型液晶A-C相变
  • 批准号:
    11004241
  • 批准年份:
    2010
  • 资助金额:
    19.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Coarse-graining, Renormalization, and Fractal Homogenization
粗粒度、重整化和分形均匀化
  • 批准号:
    2350340
  • 财政年份:
    2024
  • 资助金额:
    $ 1.27万
  • 项目类别:
    Continuing Grant
Development of tensor network renormalization group method for high dimensions and new understanding of quantum liquid phases
高维张量网络重整化群方法的发展及对量子液相的新认识
  • 批准号:
    23H01092
  • 财政年份:
    2023
  • 资助金额:
    $ 1.27万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Development of tensor renormalization group for lattice field theories rich in internal degrees of freedom
丰富内部自由度晶格场论张量重整化群的发展
  • 批准号:
    23K13096
  • 财政年份:
    2023
  • 资助金额:
    $ 1.27万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Conference: Renormalization and Visualization for packings, billiards and surfaces
会议:包装、台球和表面的重整化和可视化
  • 批准号:
    2333366
  • 财政年份:
    2023
  • 资助金额:
    $ 1.27万
  • 项目类别:
    Standard Grant
ERI: Representations of Complex Engineering Systems via Technology Recursion and Renormalization Group
ERI:通过技术递归和重整化群表示复杂工程系统
  • 批准号:
    2301627
  • 财政年份:
    2023
  • 资助金额:
    $ 1.27万
  • 项目类别:
    Standard Grant
The algebraic analysis of evanescent operators in effective field theory and their asymptotic behavior
有效场论中倏逝算子的代数分析及其渐近行为
  • 批准号:
    22KJ1072
  • 财政年份:
    2023
  • 资助金额:
    $ 1.27万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Complex dynamics: group actions, Migdal-Kadanoff renormalization, and ergodic theory
复杂动力学:群作用、Migdal-Kadanoff 重整化和遍历理论
  • 批准号:
    2154414
  • 财政年份:
    2022
  • 资助金额:
    $ 1.27万
  • 项目类别:
    Standard Grant
Renormalization and Quasi-Periodicity
重整化和准周期性
  • 批准号:
    RGPIN-2018-04510
  • 财政年份:
    2022
  • 资助金额:
    $ 1.27万
  • 项目类别:
    Discovery Grants Program - Individual
CAREER: Renormalization and higher rank parabolic actions
职业生涯:重整化和更高阶的抛物线作用
  • 批准号:
    2143133
  • 财政年份:
    2022
  • 资助金额:
    $ 1.27万
  • 项目类别:
    Continuing Grant
Homotopy Algebraic Approach to the Exact Renormalization Group Analysis in Quantum Field Theory
量子场论中精确重正化群分析的同伦代数方法
  • 批准号:
    22K14038
  • 财政年份:
    2022
  • 资助金额:
    $ 1.27万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了