Development of datasets, inverse models, and methods for adaptive fault detection and diagnostics in commercial buildings

开发商业建筑自适应故障检测和诊断的数据集、逆模型和方法

基本信息

  • 批准号:
    RGPIN-2017-06317
  • 负责人:
  • 金额:
    $ 2.11万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2018
  • 资助国家:
    加拿大
  • 起止时间:
    2018-01-01 至 2019-12-31
  • 项目状态:
    已结题

项目摘要

30 to 50% of the energy use in commercial buildings is wasted due to poorly maintained, degraded, and improperly controlled equipment and components. Given that indoor climate control in commercial buildings accounts for 13% of the total energy use and 11% of the CO2 emissions in Canada, optimizing their operation represents great potential to reduce our environmental impact and to provide comfortable, healthy, and productive indoor environments.*** The overall objective of this research program is to optimize the energy use and occupant comfort in commercial buildings by using sensor, meter, and actuator data gathered in modern building automation and control systems. With this vision in mind, the research program will address four fundamental gaps in the literature: (1) create a dataset comprising common building faults, their sensory symptoms, occurrence frequencies, and impact on energy use and comfort; (2) develop inverse models that explain multiphysical processes and occupant behaviour in buildings from sensor, meter, and actuator data; (3) develop scalable methods to diagnose physical faults in building systems and components; and (4) develop scalable methods to diagnose and correct soft faults in controls programming. The research approaches entail field-scale data collection and analyses using existing controls and automation infrastructure of three office buildings in Carleton University, field trials, and building performance simulation. ***The proposed research program will make significant short-term and long-term intellectual, environmental, economic, and HQP contributions to Canada. New datasets, models, and methods will be created. These will help us understand how our buildings perform and are used today. Wider usage of fault detection and diagnostics methods developed in this research program will reduce the environmental and economic impact of buildings. Adoption of these methods by a Canadian building data analytics company will contribute to our knowledge-based economy. More importantly, two PhD, two MSc, and three undergraduate students will work on data from real buildings, learn their systems and components, and their shortcomings. In a team environment, they will conduct interdisciplinary research on building physics, indoor environmental quality, building performance simulation, and data-science. These skills are invaluable, as few engineering programs in Canada provide a comprehensive background in building engineering, despite buildings' major role in our economy and society.
在商业建筑中,30%到50%的能源消耗是由于维护不善、退化和控制不当的设备和部件造成的。鉴于商业建筑的室内气候控制占加拿大总能源使用量的13%和二氧化碳排放量的11%,优化它们的运行对于减少对环境的影响并提供舒适、健康和高效的室内环境具有巨大的潜力。*本研究计划的总体目标是通过使用在现代建筑自动化和控制系统中收集的传感器、仪表和执行器数据来优化商业建筑的能源使用和人员舒适度。考虑到这一愿景,该研究计划将解决文献中的四个基本空白:(1)创建一个包含常见建筑故障、其感官症状、发生频率以及对能源使用和舒适度的影响的数据集;(2)开发反向模型,根据传感器、仪表和执行器数据解释建筑中的多物理过程和居住者行为;(3)开发可扩展的方法来诊断建筑系统和部件中的物理故障;以及(4)开发可扩展的方法来诊断和纠正控制编程中的软故障。研究方法包括利用卡尔顿大学三栋办公楼的现有控制和自动化基础设施进行现场规模的数据收集和分析、现场试验和建筑性能模拟。*拟议的研究计划将对加拿大的智力、环境、经济和HQP做出重大的短期和长期贡献。将创建新的数据集、模型和方法。这些将帮助我们了解我们的建筑今天是如何运行和使用的。在本研究计划中开发的故障检测和诊断方法的更广泛使用将减少建筑对环境和经济的影响。加拿大一家建筑数据分析公司采用这些方法将有助于我们的知识型经济。更重要的是,两名博士、两名硕士和三名本科生将研究真实建筑的数据,了解它们的系统和组件以及它们的缺点。在团队环境中,他们将在建筑物理、室内环境质量、建筑性能模拟和数据科学方面进行跨学科研究。这些技能是无价的,因为加拿大很少有工程项目提供全面的建筑工程背景,尽管建筑在我们的经济和社会中发挥着重要作用。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Gunay, Burak其他文献

Inverse blackbox modeling of the heating and cooling load in office buildings
  • DOI:
    10.1016/j.enbuild.2017.02.064
  • 发表时间:
    2017-05-01
  • 期刊:
  • 影响因子:
    6.7
  • 作者:
    Gunay, Burak;Shen, Weiming;Newsham, Guy
  • 通讯作者:
    Newsham, Guy
Neutrophil to Lymphocyte Ratio and Serum Biomarkers : A Potential Tool for Prediction of Clinically Relevant Cerebral Vasospasm after Aneurysmal Subarachnoid Hemorrhage.
  • DOI:
    10.3340/jkns.2023.0157
  • 发表时间:
    2023-11
  • 期刊:
  • 影响因子:
    1.6
  • 作者:
    Kula, Osman;Gunay, Burak;Kayabas, Merve Yaren;Akturk, Yener;Kula, Ezgi;Tutunculer, Banu;Sut, Necdet;Solak, Serdar
  • 通讯作者:
    Solak, Serdar
Energy and comfort performance benefits of early detection of building sensor and actuator faults
Connected and Distributed Sensing in Buildings Improving Operation and Maintenance
Ten questions concerning occupant-centric control and operations
有关以乘员为中心的控制和操作的十个问题
  • DOI:
    10.1016/j.buildenv.2023.110518
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    7.4
  • 作者:
    Nagy, Zoltan;Gunay, Burak;Miller, Clayton;Hahn, Jakob;Ouf, Mohamed M.;Lee, Seungjae;Hobson, Brodie W.;Abuimara, Tareq;Bandurski, Karol;André, Maíra
  • 通讯作者:
    André, Maíra

Gunay, Burak的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Gunay, Burak', 18)}}的其他基金

Development of datasets, inverse models, and methods for adaptive fault detection and diagnostics in commercial buildings
开发商业建筑自适应故障检测和诊断的数据集、逆模型和方法
  • 批准号:
    RGPIN-2017-06317
  • 财政年份:
    2022
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Discovery Grants Program - Individual
Development of datasets, inverse models, and methods for adaptive fault detection and diagnostics in commercial buildings
开发商业建筑自适应故障检测和诊断的数据集、逆模型和方法
  • 批准号:
    RGPIN-2017-06317
  • 财政年份:
    2021
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Discovery Grants Program - Individual
Data-driven methods for operation and maintenance of commercial buildings
数据驱动的商业建筑运维方法
  • 批准号:
    516465-2017
  • 财政年份:
    2021
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Collaborative Research and Development Grants
A WiFi-based occupancy sensing, modelling, and simulation method to ensure COVID-19 ventilation and social distancing norms at workplaces
基于 WiFi 的占用感测、建模和模拟方法,可确保工作场所的 COVID-19 通风和社交距离规范
  • 批准号:
    554565-2020
  • 财政年份:
    2020
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Alliance Grants
Development of datasets, inverse models, and methods for adaptive fault detection and diagnostics in commercial buildings
开发商业建筑自适应故障检测和诊断的数据集、逆模型和方法
  • 批准号:
    RGPIN-2017-06317
  • 财政年份:
    2020
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Discovery Grants Program - Individual
Data-driven methods for operation and maintenance of commercial buildings
数据驱动的商业建筑运维方法
  • 批准号:
    516465-2017
  • 财政年份:
    2020
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Collaborative Research and Development Grants
Data-driven methods for operation and maintenance of commercial buildings
数据驱动的商业建筑运维方法
  • 批准号:
    516465-2017
  • 财政年份:
    2019
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Collaborative Research and Development Grants
Development of datasets, inverse models, and methods for adaptive fault detection and diagnostics in commercial buildings
开发商业建筑自适应故障检测和诊断的数据集、逆模型和方法
  • 批准号:
    RGPIN-2017-06317
  • 财政年份:
    2019
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Discovery Grants Program - Individual
Occupancy-centric predictive control of building systems
以占用为中心的建筑系统预测控制
  • 批准号:
    530263-2018
  • 财政年份:
    2018
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Engage Grants Program
Data-driven methods for operation and maintenance of commercial buildings
数据驱动的商业建筑运维方法
  • 批准号:
    516465-2017
  • 财政年份:
    2018
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Collaborative Research and Development Grants

相似海外基金

Enabling Reliable Testing Of SMLM Datasets
实现 SMLM 数据集的可靠测试
  • 批准号:
    BB/X01858X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Research Grant
Evaluating Policy Solutions Aimed at Improving Hospice Care Access in Rural Areas
评估旨在改善农村地区临终关怀服务的政策解决方案
  • 批准号:
    10555012
  • 财政年份:
    2023
  • 资助金额:
    $ 2.11万
  • 项目类别:
BioSynth Trust: Developing understanding and confidence in flow cytometry benchmarking synthetic datasets to improve clinical and cell therapy diagnos
BioSynth Trust:发展对流式细胞仪基准合成数据集的理解和信心,以改善临床和细胞治疗诊断
  • 批准号:
    2796588
  • 财政年份:
    2023
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Studentship
Creating harmonised and scalable methods and tools for constructing households in large diverse administrative and health research datasets
创建统一且可扩展​​的方法和工具,用于在大型多样化的行政和健康研究数据集中构建家庭
  • 批准号:
    ES/X00046X/1
  • 财政年份:
    2023
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Research Grant
EO4AgroClimate Using Earth Observation data to improve datasets for biosecurity risk mapping of pest and disease and biocontrol suitability
EO4AgroClimate 利用地球观测数据改进病虫害生物安全风险图及生物防治适宜性的数据集
  • 批准号:
    ST/Y00017X/1
  • 财政年份:
    2023
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Research Grant
OAC Core: Improving Data Integrity for HPC Datasets using Sparsity Profile
OAC 核心:使用稀疏性配置文件提高 HPC 数据集的数据完整性
  • 批准号:
    2312982
  • 财政年份:
    2023
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Standard Grant
Elements: Curating and Disseminating Solid Mechanics Based Benchmark Datasets
要素:整理和传播基于固体力学的基准数据集
  • 批准号:
    2310771
  • 财政年份:
    2023
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Standard Grant
Collaborative Research:CISE-ANR:CIF:Small:Learning from Large Datasets - Application to Multi-Subject fMRI Analysis
合作研究:CISE-ANR:CIF:Small:从大数据集中学习 - 多对象 fMRI 分析的应用
  • 批准号:
    2316421
  • 财政年份:
    2023
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Standard Grant
RAPID/Collaborative Research: Datasets for Uncrewed Aerial System (UAS) and Remote Responder Performance from Hurricane Ian
RAPID/协作研究:飓风伊恩无人飞行系统 (UAS) 和远程响应器性能的数据集
  • 批准号:
    2306453
  • 财政年份:
    2023
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Standard Grant
Multivariate machine learning analysis for identyfing neuro-anatomical biomarkers of anorexia and classifying anorexia subtypes using MR datasets.
多变量机器学习分析,用于识别厌食症的神经解剖生物标志物并使用 MR 数据集对厌食症亚型进行分类。
  • 批准号:
    23K14813
  • 财政年份:
    2023
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了