Data-driven methods for operation and maintenance of commercial buildings
数据驱动的商业建筑运维方法
基本信息
- 批准号:516465-2017
- 负责人:
- 金额:$ 1.21万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Collaborative Research and Development Grants
- 财政年份:2018
- 资助国家:加拿大
- 起止时间:2018-01-01 至 2019-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Recent findings indicate that about 30% of the energy used in commercial buildings is wasted due to poorly maintained, degraded, and improperly controlled equipment and components. Given that indoor climate control in commercial buildings accounts for 13% of the total energy use and 11% of the CO2 emissions in Canada, optimizing their operation and maintenance represents great potential to reduce our environmental impact and to provide comfortable, healthy, and productive indoor environments.**The objective of this research project is to develop data-driven decision support algorithms that guide better indoor climate control and maintenance decisions using the data inherent in building automation and control networks. New methods to detect and isolate component level faults before they begin to affect a building's comfort and energy performance will be developed. In addition, new methods to guide optimal start / stop times for heating and cooling equipment will be examined. The viability of using low-cost data streams in occupancy detection will be explored. The relationship between occupants' thermostat use behaviour patterns and their thermal comfort preferences will be investigated. The research approach entails field-scale data collection and analyses using existing controls and automation infrastructure of three office buildings in Carleton University and field trials.**The proposed research project will make significant short-term and long-term intellectual, environmental, economic, and HQP contributions to Canada. New datasets, models, and methods will be created. Adoption of these methods by the industry partner, a Canadian building data analytics company CopperTree Analytics, will contribute to our knowledge-based economy. Wider usage of the algorithms developed in this research project will reduce the environmental and economic impact of commercial buildings. The HQP will work on data from real buildings, learn their systems and components, and their shortcomings; and conduct interdisciplinary research on building physics, indoor environmental quality, building performance simulation, and data-science.**
最近的研究结果表明,商业建筑中使用的能源中约有30%是由于维护不善,退化和控制不当的设备和组件而浪费的。考虑到商业建筑的室内气候控制占加拿大总能源使用量的13%和二氧化碳排放量的11%,优化其操作和维护对于减少我们的环境影响并提供舒适,健康和高效的室内环境具有巨大的潜力。该研究项目的目标是开发数据驱动的决策支持算法,使用楼宇自动化和控制网络中固有的数据指导更好的室内气候控制和维护决策。将开发新的方法来检测和隔离组件级故障,然后再开始影响建筑物的舒适度和能源性能。此外,还将研究指导加热和冷却设备最佳启动/停止时间的新方法。将探讨在占用检测中使用低成本数据流的可行性。将研究居住者的恒温器使用行为模式与其热舒适偏好之间的关系。该研究方法需要现场规模的数据收集和分析,使用现有的控制和自动化基础设施的三个办公楼在卡尔顿大学和现场试验。拟议的研究项目将为加拿大的知识,环境,经济和HQP做出重大的短期和长期贡献。将创建新的数据集、模型和方法。加拿大建筑数据分析公司CopperTree Analytics采用这些方法,将有助于我们的知识型经济。更广泛地使用本研究项目中开发的算法将减少商业建筑对环境和经济的影响。HQP将处理来自真实的建筑的数据,了解它们的系统和组件及其缺点;并对建筑物理学、室内环境质量、建筑性能模拟和数据科学进行跨学科研究。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Gunay, Burak其他文献
Inverse blackbox modeling of the heating and cooling load in office buildings
- DOI:
10.1016/j.enbuild.2017.02.064 - 发表时间:
2017-05-01 - 期刊:
- 影响因子:6.7
- 作者:
Gunay, Burak;Shen, Weiming;Newsham, Guy - 通讯作者:
Newsham, Guy
Neutrophil to Lymphocyte Ratio and Serum Biomarkers : A Potential Tool for Prediction of Clinically Relevant Cerebral Vasospasm after Aneurysmal Subarachnoid Hemorrhage.
- DOI:
10.3340/jkns.2023.0157 - 发表时间:
2023-11 - 期刊:
- 影响因子:1.6
- 作者:
Kula, Osman;Gunay, Burak;Kayabas, Merve Yaren;Akturk, Yener;Kula, Ezgi;Tutunculer, Banu;Sut, Necdet;Solak, Serdar - 通讯作者:
Solak, Serdar
Energy and comfort performance benefits of early detection of building sensor and actuator faults
- DOI:
10.1177/0143624418769264 - 发表时间:
2018-11-01 - 期刊:
- 影响因子:1.7
- 作者:
Gunay, Burak;Shen, Weiming;O'Brien, William - 通讯作者:
O'Brien, William
Connected and Distributed Sensing in Buildings Improving Operation and Maintenance
- DOI:
10.1109/msmc.2017.2702386 - 发表时间:
2017-10-01 - 期刊:
- 影响因子:3.2
- 作者:
Gunay, Burak;Shen, Weiming - 通讯作者:
Shen, Weiming
Ten questions concerning occupant-centric control and operations
有关以乘员为中心的控制和操作的十个问题
- DOI:
10.1016/j.buildenv.2023.110518 - 发表时间:
2023 - 期刊:
- 影响因子:7.4
- 作者:
Nagy, Zoltan;Gunay, Burak;Miller, Clayton;Hahn, Jakob;Ouf, Mohamed M.;Lee, Seungjae;Hobson, Brodie W.;Abuimara, Tareq;Bandurski, Karol;André, Maíra - 通讯作者:
André, Maíra
Gunay, Burak的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Gunay, Burak', 18)}}的其他基金
Development of datasets, inverse models, and methods for adaptive fault detection and diagnostics in commercial buildings
开发商业建筑自适应故障检测和诊断的数据集、逆模型和方法
- 批准号:
RGPIN-2017-06317 - 财政年份:2022
- 资助金额:
$ 1.21万 - 项目类别:
Discovery Grants Program - Individual
Development of datasets, inverse models, and methods for adaptive fault detection and diagnostics in commercial buildings
开发商业建筑自适应故障检测和诊断的数据集、逆模型和方法
- 批准号:
RGPIN-2017-06317 - 财政年份:2021
- 资助金额:
$ 1.21万 - 项目类别:
Discovery Grants Program - Individual
Data-driven methods for operation and maintenance of commercial buildings
数据驱动的商业建筑运维方法
- 批准号:
516465-2017 - 财政年份:2021
- 资助金额:
$ 1.21万 - 项目类别:
Collaborative Research and Development Grants
A WiFi-based occupancy sensing, modelling, and simulation method to ensure COVID-19 ventilation and social distancing norms at workplaces
基于 WiFi 的占用感测、建模和模拟方法,可确保工作场所的 COVID-19 通风和社交距离规范
- 批准号:
554565-2020 - 财政年份:2020
- 资助金额:
$ 1.21万 - 项目类别:
Alliance Grants
Development of datasets, inverse models, and methods for adaptive fault detection and diagnostics in commercial buildings
开发商业建筑自适应故障检测和诊断的数据集、逆模型和方法
- 批准号:
RGPIN-2017-06317 - 财政年份:2020
- 资助金额:
$ 1.21万 - 项目类别:
Discovery Grants Program - Individual
Data-driven methods for operation and maintenance of commercial buildings
数据驱动的商业建筑运维方法
- 批准号:
516465-2017 - 财政年份:2020
- 资助金额:
$ 1.21万 - 项目类别:
Collaborative Research and Development Grants
Data-driven methods for operation and maintenance of commercial buildings
数据驱动的商业建筑运维方法
- 批准号:
516465-2017 - 财政年份:2019
- 资助金额:
$ 1.21万 - 项目类别:
Collaborative Research and Development Grants
Development of datasets, inverse models, and methods for adaptive fault detection and diagnostics in commercial buildings
开发商业建筑自适应故障检测和诊断的数据集、逆模型和方法
- 批准号:
RGPIN-2017-06317 - 财政年份:2019
- 资助金额:
$ 1.21万 - 项目类别:
Discovery Grants Program - Individual
Development of datasets, inverse models, and methods for adaptive fault detection and diagnostics in commercial buildings
开发商业建筑自适应故障检测和诊断的数据集、逆模型和方法
- 批准号:
RGPIN-2017-06317 - 财政年份:2018
- 资助金额:
$ 1.21万 - 项目类别:
Discovery Grants Program - Individual
Occupancy-centric predictive control of building systems
以占用为中心的建筑系统预测控制
- 批准号:
530263-2018 - 财政年份:2018
- 资助金额:
$ 1.21万 - 项目类别:
Engage Grants Program
相似国自然基金
Data-driven Recommendation System Construction of an Online Medical Platform Based on the Fusion of Information
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国青年学者研究基金项目
基于Cache的远程计时攻击研究
- 批准号:60772082
- 批准年份:2007
- 资助金额:28.0 万元
- 项目类别:面上项目
相似海外基金
Accurate and Individualized Prediction of Excitation-Inhibition Imbalance in Alzheimer's Disease using Data-driven Neural Model
使用数据驱动的神经模型准确、个性化地预测阿尔茨海默病的兴奋抑制失衡
- 批准号:
10727356 - 财政年份:2023
- 资助金额:
$ 1.21万 - 项目类别:
Supporting data-driven decision-making to support substance use service expansion policies and to prevent overdoses
支持数据驱动的决策,以支持物质使用服务扩展政策并防止用药过量
- 批准号:
10745632 - 财政年份:2023
- 资助金额:
$ 1.21万 - 项目类别:
Data-driven and science-informed methods for the discovery of biomedical mechanisms and processes
用于发现生物医学机制和过程的数据驱动和科学信息方法
- 批准号:
10624014 - 财政年份:2023
- 资助金额:
$ 1.21万 - 项目类别:
Thermal noise reduction in next-generation cryogenic gravitational wave telescopes through nonlinear physical model fusion data-driven methods
通过非线性物理模型融合数据驱动方法降低下一代低温引力波望远镜的热噪声
- 批准号:
23K03437 - 财政年份:2023
- 资助金额:
$ 1.21万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development of Data-Collection Algorithms and Data-Driven Control Methods for Guaranteed Stabilization of Nonlinear Systems with Uncertain Equilibria and Orbits
开发数据收集算法和数据驱动控制方法,以保证具有不确定平衡和轨道的非线性系统的稳定性
- 批准号:
23K03913 - 财政年份:2023
- 资助金额:
$ 1.21万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Integrating Musculoskeletal and Data-Driven Modeling to Understand the Biomechanical Sequelae of Syndesmotic Repair
整合肌肉骨骼和数据驱动建模以了解韧带联合修复的生物力学后遗症
- 批准号:
10751099 - 财政年份:2023
- 资助金额:
$ 1.21万 - 项目类别:
Learning Precision Medicine for Rare Diseases Empowered by Knowledge-driven Data Mining
通过知识驱动的数据挖掘学习罕见疾病的精准医学
- 批准号:
10732934 - 财政年份:2023
- 资助金额:
$ 1.21万 - 项目类别:
Development of data-driven methods for de novo design of novel enzymes.
开发用于新型酶从头设计的数据驱动方法。
- 批准号:
2890692 - 财政年份:2023
- 资助金额:
$ 1.21万 - 项目类别:
Studentship
Development of data driven and AI empowered systems biology to study human diseases
数据驱动和人工智能的发展使系统生物学能够研究人类疾病
- 批准号:
10714763 - 财政年份:2023
- 资助金额:
$ 1.21万 - 项目类别:
Collaborative Research: IHBEM: Data-driven multimodal methods for behavior-based epidemiological modeling
合作研究:IHBEM:基于行为的流行病学建模的数据驱动多模式方法
- 批准号:
2327710 - 财政年份:2023
- 资助金额:
$ 1.21万 - 项目类别:
Standard Grant