Electron-electron interactions and topology in semiconductor and graphene quantum dots
半导体和石墨烯量子点中的电子-电子相互作用和拓扑
基本信息
- 批准号:RGPIN-2014-03712
- 负责人:
- 金额:$ 2.62万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2018
- 资助国家:加拿大
- 起止时间:2018-01-01 至 2019-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Electron-electron interactions and topology are fundamental to the understanding of quantum materials and devices yet neither one is fully understood at present. Recent advances in nanotechnology make it possible to build artificial quantum materials, nanostructures and devices from single atoms, electrons, and spins. Our broadly defined research program aims at designing quantum systems both at the single particle and, most importantly, at the many-particle level. Such artificial tuneable structures will allow for the fundamental understanding of effects of electron-electron interactions and topology and pave the way toward their exploitation in quantum solid state devices addressing important technological challenges in information processing, sensing, security and energy harvesting. **Four main research directions will be pursued.**(i) theory of quantum dot networks in a field effect transistor described by fully tuneable, extended Hubbard model will be used to determine whether electron-electron interactions may lead to strongly correlated topological phases and allow for voltage control of spin needed in small quantum simulators, precursors of solid state quantum computers.**(ii) atomistic theory of interacting electrons and holes in semiconductor quantum dots embedded in nanowires will be developed to determine the potential of these structures for single and entangled photon sources, photon-to-spin conversion and formation of a robust macroscopic quantum state due to e-e interactions in a modulation doped nanowire.**(iii) theory of electronic and optical properties of quantum dots made of inverted band semiconductors, such as HgTe will be developed and conditions necessary for appearance of topologically protected spin-resolved surface states determined. The role of e-e interactions in the electronic, optical and transport properties of topological quantum dots will be determined as well as their application as strain, charge and spin sensors.**(iv) the effects of electron-electron interactions, weak spin orbit coupling and hence absence of topological effects and lack of magnetism in graphene remain a challenge. By controlling lateral size of graphene one can open an energy gap and turn graphene, a semimetal, into a one atomic layer thick "semiconductor" quantum dot, breaking sublattice symmetry generates a magnetic moment and twisting into Mobius strip introduces topology. We will develop theoretical and computational tools enabling prediction of the electronic, optical, magnetic and topological properties of graphene quantum dots. This will allow the determination of optical properties of colloidal quantum dots for solar cells, electronic properties of quantum dot networks based on electron spin in bi-layer graphene and design of integrated graphene quantum dot based electronic circuits.**This research program will advance progress in advanced quantum materials, nanostructures and devices for quantum and low power information processing, sensing and energy harvesting.
电子-电子相互作用和拓扑结构是理解量子材料和器件的基础,但目前两者都没有完全理解。纳米技术的最新进展使得从单个原子、电子和自旋构建人工量子材料、纳米结构和器件成为可能。我们广泛定义的研究计划旨在设计单粒子量子系统,最重要的是,在多粒子水平。这种人工可调结构将允许对电子-电子相互作用和拓扑结构的影响的基本理解,并为它们在量子固态设备中的开发铺平道路,以解决信息处理,传感,安全和能量收集方面的重要技术挑战。** 主要研究方向为:** (i)由完全可调的扩展哈伯德模型描述的场效应晶体管中的量子点网络理论将用于确定电子-电子相互作用是否可能导致强相关的拓扑相,并允许小型量子模拟器(固态量子计算机的前体)中所需的自旋电压控制。** (ii)将发展嵌入纳米线中的半导体量子点中相互作用的电子和空穴的原子理论,以确定这些结构对于单个和纠缠光子源、光子到自旋转换以及由于调制掺杂纳米线中的e-e相互作用而形成鲁棒宏观量子态的潜力。(iii)将发展由反能带半导体(如碲化汞)制成的量子点的电子和光学性质的理论,并确定拓扑保护自旋分辨表面态出现的必要条件。e-e相互作用在拓扑量子点的电子,光学和输运性质中的作用将被确定,以及它们作为应变,电荷和自旋传感器的应用。(iv)电子-电子相互作用的影响、弱自旋轨道耦合以及因此在石墨烯中缺乏拓扑效应和磁性仍然是一个挑战。通过控制石墨烯的横向尺寸,可以打开能隙,将半金属石墨烯变成一个原子层厚的“半导体”量子点,打破亚晶格对称性会产生磁矩,扭曲成莫比乌斯带会引入拓扑结构。我们将开发能够预测石墨烯量子点的电子,光学,磁性和拓扑特性的理论和计算工具。这将允许确定用于太阳能电池的胶体量子点的光学性质,基于双层石墨烯中电子自旋的量子点网络的电子性质以及基于集成石墨烯量子点的电子电路的设计。该研究计划将推动先进量子材料,纳米结构和量子和低功耗信息处理,传感和能量收集设备的进展。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Hawrylak, Pawel其他文献
Systematic study of the emission spectra of nanowire quantum dots
- DOI:
10.1063/5.0045880 - 发表时间:
2021-04-19 - 期刊:
- 影响因子:4
- 作者:
Laferriere, Patrick;Yeung, Edith;Hawrylak, Pawel - 通讯作者:
Hawrylak, Pawel
Electronic structure of a single MoS2 monolayer
- DOI:
10.1016/j.ssc.2012.02.005 - 发表时间:
2012-05-01 - 期刊:
- 影响因子:2.1
- 作者:
Kadantsev, Eugene S.;Hawrylak, Pawel - 通讯作者:
Hawrylak, Pawel
Atomistic theory of emission from dark excitons in self-assembled quantum dots
- DOI:
10.1103/physrevb.87.115310 - 发表时间:
2013-03-18 - 期刊:
- 影响因子:3.7
- 作者:
Korkusinski, Marek;Hawrylak, Pawel - 通讯作者:
Hawrylak, Pawel
Real space Hartree-Fock configuration interaction method for complex lateral quantum dot molecules
- DOI:
10.1063/1.2219447 - 发表时间:
2006-07-21 - 期刊:
- 影响因子:4.4
- 作者:
Abolfath, Ramin M.;Hawrylak, Pawel - 通讯作者:
Hawrylak, Pawel
Band nesting and exciton spectrum in monolayer MoS2
- DOI:
10.1103/physrevb.101.125423 - 发表时间:
2020-03-23 - 期刊:
- 影响因子:3.7
- 作者:
Bieniek, Maciej;Szulakowska, Ludmila;Hawrylak, Pawel - 通讯作者:
Hawrylak, Pawel
Hawrylak, Pawel的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Hawrylak, Pawel', 18)}}的其他基金
Synthetic many-body systems in artificially structured materials
人工结构材料中的合成多体系统
- 批准号:
RGPIN-2019-05714 - 财政年份:2022
- 资助金额:
$ 2.62万 - 项目类别:
Discovery Grants Program - Individual
Synthetic many-body systems in artificially structured materials
人工结构材料中的合成多体系统
- 批准号:
RGPIN-2019-05714 - 财政年份:2021
- 资助金额:
$ 2.62万 - 项目类别:
Discovery Grants Program - Individual
Electron-spin-based Quantum Circuits in 2D Materials (QC2DM)
二维材料中基于电子自旋的量子电路 (QC2DM)
- 批准号:
521420-2018 - 财政年份:2020
- 资助金额:
$ 2.62万 - 项目类别:
Strategic Projects - Group
Synthetic many-body systems in artificially structured materials
人工结构材料中的合成多体系统
- 批准号:
RGPIN-2019-05714 - 财政年份:2020
- 资助金额:
$ 2.62万 - 项目类别:
Discovery Grants Program - Individual
Synthetic many-body systems in artificially structured materials
人工结构材料中的合成多体系统
- 批准号:
RGPIN-2019-05714 - 财政年份:2019
- 资助金额:
$ 2.62万 - 项目类别:
Discovery Grants Program - Individual
Electron-spin-based Quantum Circuits in 2D Materials (QC2DM)
二维材料中基于电子自旋的量子电路 (QC2DM)
- 批准号:
521420-2018 - 财政年份:2019
- 资助金额:
$ 2.62万 - 项目类别:
Strategic Projects - Group
Electron-spin-based Quantum Circuits in 2D Materials (QC2DM)****
二维材料中基于电子自旋的量子电路 (QC2DM)****
- 批准号:
521420-2018 - 财政年份:2018
- 资助金额:
$ 2.62万 - 项目类别:
Strategic Projects - Group
Electron-electron interactions and topology in semiconductor and graphene quantum dots
半导体和石墨烯量子点中的电子-电子相互作用和拓扑
- 批准号:
RGPIN-2014-03712 - 财政年份:2017
- 资助金额:
$ 2.62万 - 项目类别:
Discovery Grants Program - Individual
Electron-electron interactions and topology in semiconductor and graphene quantum dots
半导体和石墨烯量子点中的电子-电子相互作用和拓扑
- 批准号:
RGPIN-2014-03712 - 财政年份:2016
- 资助金额:
$ 2.62万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
Muon--electron转换过程的实验研究
- 批准号:11335009
- 批准年份:2013
- 资助金额:360.0 万元
- 项目类别:重点项目
Potyvirus柱状内含体-胞间连丝连接装置的三维重构及病毒胞间运动研究
- 批准号:31070129
- 批准年份:2010
- 资助金额:34.0 万元
- 项目类别:面上项目
红树对重金属的定位累积及耦合微观分析与耐受策略研究
- 批准号:30970527
- 批准年份:2009
- 资助金额:35.0 万元
- 项目类别:面上项目
废水中难降解有机污染物的电子束辐照降解机理
- 批准号:50578090
- 批准年份:2005
- 资助金额:30.0 万元
- 项目类别:面上项目
铁磁性超导体的微观电子态和相图的理论研究
- 批准号:10574063
- 批准年份:2005
- 资助金额:26.0 万元
- 项目类别:面上项目
相似海外基金
Fabrication of chiral plasmonic nanogaps by hot electron-induced metal growth for enhanced enantioselective light-matter interactions
通过热电子诱导金属生长制造手性等离子体纳米间隙以增强对映选择性光-物质相互作用
- 批准号:
23K23191 - 财政年份:2024
- 资助金额:
$ 2.62万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Nitrosation and Nitration Reactions of the Radical Cations of Guanine, 8-Oxoguanine and their Derivatives by NOx: Radical-radical Interactions at Multiple Electron Configurations
鸟嘌呤、8-氧代鸟嘌呤及其衍生物的自由基阳离子与 NOx 的亚硝化和硝化反应:多电子构型下的自由基-自由基相互作用
- 批准号:
2350109 - 财政年份:2024
- 资助金额:
$ 2.62万 - 项目类别:
Standard Grant
Non-perturbative studies of electron-lattice interactions in quantum materials
量子材料中电子晶格相互作用的非微扰研究
- 批准号:
2401388 - 财政年份:2024
- 资助金额:
$ 2.62万 - 项目类别:
Continuing Grant
Mitochondrial electron transport dysfunction: Dissecting pathomechanisms
线粒体电子传递功能障碍:剖析病理机制
- 批准号:
10679988 - 财政年份:2023
- 资助金额:
$ 2.62万 - 项目类别:
Competing charge, spin, and molecular lattice interactions lead to quantum glass phases in strongly correlated pi-electron systems
竞争性电荷、自旋和分子晶格相互作用导致强相关π电子系统中的量子玻璃相
- 批准号:
23H01114 - 财政年份:2023
- 资助金额:
$ 2.62万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Fabrication of chiral plasmonic nanogaps by hot electron-induced metal growth for enhanced enantioselective light-matter interactions
通过热电子诱导金属生长制造手性等离子体纳米间隙以增强对映选择性光-物质相互作用
- 批准号:
22H01923 - 财政年份:2022
- 资助金额:
$ 2.62万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Quantitative analyses of quantum many-body interactions in low-dimensional electron systems with hidden spin polarization
具有隐藏自旋极化的低维电子系统中量子多体相互作用的定量分析
- 批准号:
22K03495 - 财政年份:2022
- 资助金额:
$ 2.62万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Elements: The PERTURBO Package: A Community Code for Electron Interactions and Dynamics in Materials
元素:PERTURBO 包:材料中电子相互作用和动力学的社区代码
- 批准号:
2209262 - 财政年份:2022
- 资助金额:
$ 2.62万 - 项目类别:
Standard Grant
Collaborative Research: GEM--Energetic Electron Nonlinear Interactions with Oblique Whistler-Mode Chorus Waves
合作研究:GEM--高能电子与斜惠斯勒模式合唱波的非线性相互作用
- 批准号:
2225121 - 财政年份:2022
- 资助金额:
$ 2.62万 - 项目类别:
Standard Grant
Creation of a New Mechanism for Electron Delocalization by Taking Advantage of Non-bonded Interactions between Heavy Atoms
利用重原子之间的非键相互作用创建电子离域新机制
- 批准号:
22K19019 - 财政年份:2022
- 资助金额:
$ 2.62万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)