Multi-level adaptive systems and algorithms for agile and opportunistic sensing
用于敏捷和机会感知的多级自适应系统和算法
基本信息
- 批准号:501206-2016
- 负责人:
- 金额:$ 13.11万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Department of National Defence / NSERC Research Partnership
- 财政年份:2018
- 资助国家:加拿大
- 起止时间:2018-01-01 至 2019-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Sensing or inference using data from heterogeneous and geographically-distributed sensors has many civilian as well as defense applications. For example, in defense-oriented surveillance systems, multiple unidentified targets are tracked using noisy data from sensors such as radar, sonar, electro-optical or infrared cameras to identify their locations and courses and classify their types. In civilian urban-monitoring or smart-city systems, multiple cameras are used to monitor traffic and to ensure the safety and security of people in an area. Advances in sensor technologies have resulted in affordable high-quality sensors (e.g., video cameras, acoustic devices, short-range radars) that are ubiquitous around us. Also, unlike before when sensors were usually deployed by those interested in surveillance, now data from ad-hoc sensors-of-opportunity are also available. Admittedly, computing technology has also improved along with advances in sensor technology. However, in order to achieve real-time sensing capability, it is necessary to develop efficient algorithms to process the vast amounts of data from a multitude of sensors (e.g., 4K video data at high framerates, sonar data with extremely high false alarm rates) with a time-varying sensor architecture or configuration. That is, we need algorithms that can adapt to ever-changing target characteristics and sensor configurations at design-time as well as at run-time. We propose to develop multi-level (e.g., at sensor, platform, system and system-of-systems levels) adaptation algorithms to process data from a time-varying set of sensors mounted on platforms that may evolve over time with the objective of accurate tracking, classification and situational awareness. In addition to training highly qualified personnel and advancing the state-of-the-art in sensing technology, the**proposed work will have significant economic and societal impacts. The algorithms to be developed in this project can be applied, with some modifications, to defense as well as civilian sensing systems.
使用来自异构和地理分布的传感器的数据进行感测或推断具有许多民用和国防应用。例如,在面向防御的监视系统中,使用来自诸如雷达、声纳、光电或红外摄像机的传感器的噪声数据来跟踪多个未识别的目标,以识别它们的位置和路线并对其类型进行分类。在民用城市监控或智能城市系统中,多个摄像头用于监控交通并确保区域内人员的安全。传感器技术的进步已经产生了负担得起的高质量传感器(例如,摄像机、声学设备、短程雷达),这些设备在我们周围无处不在。此外,与以前传感器通常由那些对监视感兴趣的人部署不同,现在也可以使用来自特设机会传感器的数据。诚然,计算技术也随着传感器技术的进步而沿着改进。然而,为了实现实时感测能力,有必要开发有效的算法来处理来自多个传感器的大量数据(例如,高帧率下的4K视频数据、具有极高误报率的声纳数据)与时变传感器架构或配置。也就是说,我们需要能够在设计时和运行时适应不断变化的目标特性和传感器配置的算法。我们建议开发多层次(例如,在传感器、平台、系统和系统的系统级别)的自适应算法,以处理来自安装在平台上的时变传感器组的数据,这些传感器组可以随着时间的推移而发展,目标是精确跟踪、分类和态势感知。除了培训高素质的人员和推进传感技术的最新发展外,** 拟议的工作将产生重大的经济和社会影响。在这个项目中开发的算法可以应用,与一些修改,国防以及民用传感系统。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kirubarajan, Thia其他文献
Seamless group target tracking using random finite sets
使用随机有限集进行无缝群组目标跟踪
- DOI:
10.1016/j.sigpro.2020.107683 - 发表时间:
2020-11-01 - 期刊:
- 影响因子:4.4
- 作者:
Li, Zhejun;Hu, Weidong;Kirubarajan, Thia - 通讯作者:
Kirubarajan, Thia
Multiple Model Multi-Bernoulli Filters for Manoeuvering Targets
- DOI:
10.1109/taes.2013.6621845 - 发表时间:
2013-10-01 - 期刊:
- 影响因子:4.4
- 作者:
Dunne, Darcy;Kirubarajan, Thia - 通讯作者:
Kirubarajan, Thia
Arbitrary Microphone Array Optimization Method Based on TDOA for Specific Localization Scenarios
基于TDOA的特定定位场景任意麦克风阵列优化方法
- DOI:
10.3390/s19194326 - 发表时间:
2019-10-01 - 期刊:
- 影响因子:3.9
- 作者:
Liu, Haitao;Kirubarajan, Thia;Xiao, Qian - 通讯作者:
Xiao, Qian
Application of an Efficient Graph-Based Partitioning Algorithm for Extended Target Tracking Using GM-PHD Filter
- DOI:
10.1109/taes.2020.2990803 - 发表时间:
2020-12-01 - 期刊:
- 影响因子:4.4
- 作者:
Qin, Zheng;Kirubarajan, Thia;Liang, Yangang - 通讯作者:
Liang, Yangang
Analysis of Propagation Delay Effects on Bearings-Only Fusion of Heterogeneous Sensors
- DOI:
10.1109/tsp.2021.3129599 - 发表时间:
2021-01-01 - 期刊:
- 影响因子:5.4
- 作者:
Arulampalam, Sanjeev;Ristic, Branko;Kirubarajan, Thia - 通讯作者:
Kirubarajan, Thia
Kirubarajan, Thia的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kirubarajan, Thia', 18)}}的其他基金
Airborne Tracking of Small Ground and Maritime Targets Under Realistic Conditions
现实条件下空中跟踪小型地面和海上目标
- 批准号:
535810-2018 - 财政年份:2021
- 资助金额:
$ 13.11万 - 项目类别:
Collaborative Research and Development Grants
Robust State Estimation in Uncertain Environments Using Point Process Models
使用点过程模型在不确定环境中进行鲁棒状态估计
- 批准号:
RGPIN-2017-05365 - 财政年份:2021
- 资助金额:
$ 13.11万 - 项目类别:
Discovery Grants Program - Individual
Optimal Layered Resource Management and Data Processing for Threat Detection in Urban Environments
城市环境中威胁检测的最佳分层资源管理和数据处理
- 批准号:
538404-2018 - 财政年份:2021
- 资助金额:
$ 13.11万 - 项目类别:
Collaborative Research and Development Grants
Multi-level adaptive systems and algorithms for agile and opportunistic sensing
用于敏捷和机会感知的多级自适应系统和算法
- 批准号:
501206-2016 - 财政年份:2020
- 资助金额:
$ 13.11万 - 项目类别:
Department of National Defence / NSERC Research Partnership
Optimal Layered Resource Management and Data Processing for Threat Detection in Urban Environments
城市环境中威胁检测的最佳分层资源管理和数据处理
- 批准号:
538404-2018 - 财政年份:2020
- 资助金额:
$ 13.11万 - 项目类别:
Collaborative Research and Development Grants
NSERC/General Dynamics Mission Systems-Canada Industrial Research Chair in Target Tracking and Information Fusion
NSERC/通用动力任务系统-加拿大目标跟踪和信息融合工业研究主席
- 批准号:
521710-2016 - 财政年份:2020
- 资助金额:
$ 13.11万 - 项目类别:
Industrial Research Chairs
Software-Controlled Active Electronically Scanned Array Radar for Airbone Ground Surveillance
用于机载地面监视的软件控制有源电子扫描阵列雷达
- 批准号:
500634-2016 - 财政年份:2020
- 资助金额:
$ 13.11万 - 项目类别:
Department of National Defence / NSERC Research Partnership
Robust State Estimation in Uncertain Environments Using Point Process Models
使用点过程模型在不确定环境中进行鲁棒状态估计
- 批准号:
RGPIN-2017-05365 - 财政年份:2020
- 资助金额:
$ 13.11万 - 项目类别:
Discovery Grants Program - Individual
Robust State Estimation in Uncertain Environments Using Point Process Models
使用点过程模型在不确定环境中进行鲁棒状态估计
- 批准号:
507969-2017 - 财政年份:2019
- 资助金额:
$ 13.11万 - 项目类别:
Discovery Grants Program - Accelerator Supplements
Robust State Estimation in Uncertain Environments Using Point Process Models
使用点过程模型在不确定环境中进行鲁棒状态估计
- 批准号:
RGPIN-2017-05365 - 财政年份:2019
- 资助金额:
$ 13.11万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
外周犬尿氨酸通过脑膜免疫致海马BDNF水平降低介导术后认知功能障碍
- 批准号:82371193
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
海马神经元胆固醇代谢重编程致染色质组蛋白乙酰化水平降低介导老年小鼠术后认知功能障碍
- 批准号:82371192
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
粒子level set方法的改进与空间自适应波浪模型并行化研究
- 批准号:52171245
- 批准年份:2021
- 资助金额:58 万元
- 项目类别:面上项目
多层次纳米叠层块体复合材料的仿生设计、制备及宽温域增韧研究
- 批准号:51973054
- 批准年份:2019
- 资助金额:60.0 万元
- 项目类别:面上项目
无振荡可压缩两相流切割网格方法及其在激波诱导气泡塌陷中的应用研究
- 批准号:11702272
- 批准年份:2017
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
含有表面活性剂的液体浸润的模型和数值计算
- 批准号:11601221
- 批准年份:2016
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
基于高频限价指令簿的流动性度量及对市场波动影响机制研究
- 批准号:71601091
- 批准年份:2016
- 资助金额:17.0 万元
- 项目类别:青年科学基金项目
基于Level Set方法的三维爆炸与冲击仿真软件开发及其应用
- 批准号:11502121
- 批准年份:2015
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
非球对称单气穴声致发光问题的直接数值模拟
- 批准号:11501173
- 批准年份:2015
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
层级稀疏化的Mid-Level特征空间下高分辨率遥感影像检索方法研究
- 批准号:41401376
- 批准年份:2014
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Human Interaction with Multi-level, Transparent and Adaptive Automation
与多层次、透明和自适应自动化的人机交互
- 批准号:
RGPIN-2019-06773 - 财政年份:2022
- 资助金额:
$ 13.11万 - 项目类别:
Discovery Grants Program - Individual
Human Interaction with Multi-level, Transparent and Adaptive Automation
与多层次、透明和自适应自动化的人机交互
- 批准号:
RGPIN-2019-06773 - 财政年份:2021
- 资助金额:
$ 13.11万 - 项目类别:
Discovery Grants Program - Individual
Multi-level adaptive systems and algorithms for agile and opportunistic sensing
用于敏捷和机会感知的多级自适应系统和算法
- 批准号:
501206-2016 - 财政年份:2020
- 资助金额:
$ 13.11万 - 项目类别:
Department of National Defence / NSERC Research Partnership
Human Interaction with Multi-level, Transparent and Adaptive Automation
与多层次、透明和自适应自动化的人机交互
- 批准号:
RGPIN-2019-06773 - 财政年份:2020
- 资助金额:
$ 13.11万 - 项目类别:
Discovery Grants Program - Individual
Human Interaction with Multi-level, Transparent and Adaptive Automation
与多层次、透明和自适应自动化的人机交互
- 批准号:
RGPIN-2019-06773 - 财政年份:2019
- 资助金额:
$ 13.11万 - 项目类别:
Discovery Grants Program - Individual
Adaptive Multi-level Multi-phenomena Appearance Models
自适应多级多现象外观模型
- 批准号:
RGPIN-2015-04378 - 财政年份:2019
- 资助金额:
$ 13.11万 - 项目类别:
Discovery Grants Program - Individual
Multi-level adaptive systems and algorithms for agile and opportunistic sensing
用于敏捷和机会感知的多级自适应系统和算法
- 批准号:
501206-2016 - 财政年份:2019
- 资助金额:
$ 13.11万 - 项目类别:
Department of National Defence / NSERC Research Partnership
Adaptive Multi-level Multi-phenomena Appearance Models
自适应多级多现象外观模型
- 批准号:
RGPIN-2015-04378 - 财政年份:2018
- 资助金额:
$ 13.11万 - 项目类别:
Discovery Grants Program - Individual
Multi-level adaptive systems and algorithms for agile and opportunistic sensing
用于敏捷和机会感知的多级自适应系统和算法
- 批准号:
501206-2016 - 财政年份:2017
- 资助金额:
$ 13.11万 - 项目类别:
Department of National Defence / NSERC Research Partnership
SHF: Small: Collaborative Research: Multi-level Non-volatile FPGA Synthesis to Empower Efficient Self-adaptive System Implementations
SHF:小型:协作研究:多级非易失性 FPGA 综合,实现高效自适应系统
- 批准号:
1820537 - 财政年份:2017
- 资助金额:
$ 13.11万 - 项目类别:
Standard Grant