Adaptive Multi-level Multi-phenomena Appearance Models

自适应多级多现象外观模型

基本信息

  • 批准号:
    RGPIN-2015-04378
  • 负责人:
  • 金额:
    $ 2.62万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2018
  • 资助国家:
    加拿大
  • 起止时间:
    2018-01-01 至 2019-12-31
  • 项目状态:
    已结题

项目摘要

Rendering realistic synthetic scenes requires an accurate representation of 3D objects and light transport. The result of this simulation is filtered in an image as surface appearance, which varies with distance, orientation, incident illumination, reflection properties, interreflections, subsurface scattering, microgeometry, and textures. Light transport and visibility are often resolved using a combination of Monte Carlo (MC) sampling and ray tracing, well adapted through multiple sampling to most integration problems in rendering. However, they are inefficient in complex scenes because they operate on the finest-scale of the scene representation, and thus, this approach does not scale for real-time rendering of complex scenes nor offline high-quality rendering. Instead, we propose to adapt pre-filtered representations of geometries, visibility, and appearances to the pixel size, i.e., to find an appropriate level-of-detail computation for light-object interactions. Our recent LEADR method computes the color over an entire pixel footprint, interactively and independent of the footprint's size. It is filterable, efficient, suitable for GPUs, scalable with complexity, and high-quality, but it is limited to textured height maps under direct illumination.***This research program will design several novel hierarchical representations of surfaces, volumes, visibility/transparency, textures, and light transport, to cast the phenomena that affect appearance into our prefiltered approach. We propose to generalize the concept of light transport within a black box to all combined factors affecting appearance, thus efficiently determining the appropriate representation under viewing and illumination conditions, leading to real-time rendering of complex scenes, as well as an adapted scheme to be integrated in path-tracing methods.***We will build knowledge from a number of specific case studies, such as grass-to-lawn, tree-to-canopy, sand-to-dune, fabrics-to-drapes, building-to-city, etc. We will develop interpolation schemes between two adjacent levels in a hierarchy. Then we will work our way up by introducing representations at coarser hierarchy levels, and adapting interpolation schemes. Next we will add the other effects affecting appearance, integrating them into a more general model. Our long-term goal is to develop a unified multi-level multi-phenomena appearance scheme suitable for high-quality real-time and offline rendering.**
渲染逼真的合成场景需要精确表示3D对象和光传输。 这种模拟的结果在图像中被过滤为表面外观,其随距离、方向、入射照明、反射特性、相互反射、次表面散射、微几何和纹理而变化。光传输和可见性通常使用蒙特卡罗(MC)采样和光线跟踪的组合来解决,通过多次采样很好地适应了渲染中的大多数集成问题。 然而,它们在复杂场景中是低效的,因为它们在场景表示的最细尺度上操作,并且因此,这种方法不针对复杂场景的实时渲染或离线高质量渲染进行缩放。相反,我们提出使几何形状、可见性和外观的预过滤表示适应像素大小,即,找到一个适当的细节层次的计算光对象的相互作用。 我们最近的LEADR方法计算整个像素足迹的颜色,交互式和独立的足迹的大小。 它是可过滤的,高效的,适用于GPU,可扩展的复杂性和高质量,但它仅限于直接照明下的纹理高度图。该研究计划将设计几种新颖的表面,体积,可见性/透明度,纹理和光传输的分层表示,以将影响外观的现象投射到我们的预过滤方法中。 我们建议将黑盒内光传输的概念概括为影响外观的所有组合因素,从而有效地确定观看和照明条件下的适当表示,从而实现复杂场景的实时渲染,以及集成的调整方案。路径追踪方法。*我们将从一些具体的案例研究中建立知识,如草到草坪,树到树冠,沙到沙丘,织物到窗帘,建筑到城市等,我们将开发层次结构中两个相邻级别之间的插值方案。 然后,我们将通过引入更粗层次的表示和调整插值方案来提高我们的工作方式。 接下来,我们将添加影响外观的其他效果,将它们集成到更通用的模型中。 我们的长期目标是开发一个统一的多层次多现象外观方案,适用于高质量的实时和离线渲染。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Poulin, Pierre其他文献

Poulin, Pierre的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Poulin, Pierre', 18)}}的其他基金

Procedural Creation and Real-time Display of Realistic Complex Scenes
真实复杂场景的程序化创建和实时显示
  • 批准号:
    RGPIN-2020-05117
  • 财政年份:
    2022
  • 资助金额:
    $ 2.62万
  • 项目类别:
    Discovery Grants Program - Individual
Procedural Creation and Real-time Display of Realistic Complex Scenes
真实复杂场景的程序化创建和实时显示
  • 批准号:
    RGPIN-2020-05117
  • 财政年份:
    2021
  • 资助金额:
    $ 2.62万
  • 项目类别:
    Discovery Grants Program - Individual
Procedural Creation and Real-time Display of Realistic Complex Scenes
真实复杂场景的程序化创建和实时显示
  • 批准号:
    RGPIN-2020-05117
  • 财政年份:
    2020
  • 资助金额:
    $ 2.62万
  • 项目类别:
    Discovery Grants Program - Individual
Adaptive Multi-level Multi-phenomena Appearance Models
自适应多级多现象外观模型
  • 批准号:
    RGPIN-2015-04378
  • 财政年份:
    2019
  • 资助金额:
    $ 2.62万
  • 项目类别:
    Discovery Grants Program - Individual
Adaptive Multi-level Multi-phenomena Appearance Models
自适应多级多现象外观模型
  • 批准号:
    RGPIN-2015-04378
  • 财政年份:
    2017
  • 资助金额:
    $ 2.62万
  • 项目类别:
    Discovery Grants Program - Individual
Adaptive Multi-level Multi-phenomena Appearance Models
自适应多级多现象外观模型
  • 批准号:
    RGPIN-2015-04378
  • 财政年份:
    2016
  • 资助金额:
    $ 2.62万
  • 项目类别:
    Discovery Grants Program - Individual
Adaptive Multi-level Multi-phenomena Appearance Models
自适应多级多现象外观模型
  • 批准号:
    RGPIN-2015-04378
  • 财政年份:
    2015
  • 资助金额:
    $ 2.62万
  • 项目类别:
    Discovery Grants Program - Individual
Complex appearance modeling and animation
复杂的外观建模和动画
  • 批准号:
    155591-2010
  • 财政年份:
    2014
  • 资助金额:
    $ 2.62万
  • 项目类别:
    Discovery Grants Program - Individual
Complex appearance modeling and animation
复杂的外观建模和动画
  • 批准号:
    155591-2010
  • 财政年份:
    2013
  • 资助金额:
    $ 2.62万
  • 项目类别:
    Discovery Grants Program - Individual
Complex appearance modeling and animation
复杂的外观建模和动画
  • 批准号:
    155591-2010
  • 财政年份:
    2012
  • 资助金额:
    $ 2.62万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

基于Multi-Pass Cell的高功率皮秒激光脉冲非线性压缩关键技术研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
Multi-decadeurbansubsidencemonitoringwithmulti-temporaryPStechnique
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    80 万元
  • 项目类别:
High-precision force-reflected bilateral teleoperation of multi-DOF hydraulic robotic manipulators
  • 批准号:
    52111530069
  • 批准年份:
    2021
  • 资助金额:
    10 万元
  • 项目类别:
    国际(地区)合作与交流项目
基于8色荧光标记的Multi-InDel复合检测体系在降解混合检材鉴定的应用研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
大规模非确定图数据分析及其Multi-Accelerator并行系统架构研究
  • 批准号:
    62002350
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
3D multi-parameters CEST联合DKI对椎间盘退变机制中微环境微结构改变的定量研究
  • 批准号:
    82001782
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
高速Multi-bit/cycle SAR ADC性能优化理论研究
  • 批准号:
    62004023
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
基于multi-SNP标记及不拆分策略的复杂混合样本身份溯源研究
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    56 万元
  • 项目类别:
    面上项目
大地电磁强噪音压制的Multi-RRMC技术及其在青藏高原东南缘—印支块体地壳流追踪中的应用
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    万元
  • 项目类别:
    国际(地区)合作与交流项目

相似海外基金

Human Interaction with Multi-level, Transparent and Adaptive Automation
与多层次、透明和自适应自动化的人机交互
  • 批准号:
    RGPIN-2019-06773
  • 财政年份:
    2022
  • 资助金额:
    $ 2.62万
  • 项目类别:
    Discovery Grants Program - Individual
Human Interaction with Multi-level, Transparent and Adaptive Automation
与多层次、透明和自适应自动化的人机交互
  • 批准号:
    RGPIN-2019-06773
  • 财政年份:
    2021
  • 资助金额:
    $ 2.62万
  • 项目类别:
    Discovery Grants Program - Individual
Multi-level adaptive systems and algorithms for agile and opportunistic sensing
用于敏捷和机会感知的多级自适应系统和算法
  • 批准号:
    501206-2016
  • 财政年份:
    2020
  • 资助金额:
    $ 2.62万
  • 项目类别:
    Department of National Defence / NSERC Research Partnership
Human Interaction with Multi-level, Transparent and Adaptive Automation
与多层次、透明和自适应自动化的人机交互
  • 批准号:
    RGPIN-2019-06773
  • 财政年份:
    2020
  • 资助金额:
    $ 2.62万
  • 项目类别:
    Discovery Grants Program - Individual
Human Interaction with Multi-level, Transparent and Adaptive Automation
与多层次、透明和自适应自动化的人机交互
  • 批准号:
    RGPIN-2019-06773
  • 财政年份:
    2019
  • 资助金额:
    $ 2.62万
  • 项目类别:
    Discovery Grants Program - Individual
Adaptive Multi-level Multi-phenomena Appearance Models
自适应多级多现象外观模型
  • 批准号:
    RGPIN-2015-04378
  • 财政年份:
    2019
  • 资助金额:
    $ 2.62万
  • 项目类别:
    Discovery Grants Program - Individual
Multi-level adaptive systems and algorithms for agile and opportunistic sensing
用于敏捷和机会感知的多级自适应系统和算法
  • 批准号:
    501206-2016
  • 财政年份:
    2019
  • 资助金额:
    $ 2.62万
  • 项目类别:
    Department of National Defence / NSERC Research Partnership
Multi-level adaptive systems and algorithms for agile and opportunistic sensing
用于敏捷和机会感知的多级自适应系统和算法
  • 批准号:
    501206-2016
  • 财政年份:
    2018
  • 资助金额:
    $ 2.62万
  • 项目类别:
    Department of National Defence / NSERC Research Partnership
Multi-level adaptive systems and algorithms for agile and opportunistic sensing
用于敏捷和机会感知的多级自适应系统和算法
  • 批准号:
    501206-2016
  • 财政年份:
    2017
  • 资助金额:
    $ 2.62万
  • 项目类别:
    Department of National Defence / NSERC Research Partnership
SHF: Small: Collaborative Research: Multi-level Non-volatile FPGA Synthesis to Empower Efficient Self-adaptive System Implementations
SHF:小型:协作研究:多级非易失性 FPGA 综合,实现高效自适应系统
  • 批准号:
    1820537
  • 财政年份:
    2017
  • 资助金额:
    $ 2.62万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了