Hand Segmentation and Detection Applied to Mobile Devices Using a Noisy Input Depth Image Stream****

使用噪声输入深度图像流应用于移动设备的手部分割和检测****

基本信息

  • 批准号:
    537630-2018
  • 负责人:
  • 金额:
    $ 1.82万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Engage Grants Program
  • 财政年份:
    2018
  • 资助国家:
    加拿大
  • 起止时间:
    2018-01-01 至 2019-12-31
  • 项目状态:
    已结题

项目摘要

Human computer interaction is rapidly evolving with an emerging focus on gesture recognition tools. There are several state-of-the-art algorithms that tackle aspects of this problem, but no convincing result has been presented that tracks motion, localizes hands, and interprets gestures. Leap Motion specializes in hand tracking but does not produce suitable gesture detection and interpretation. Mobile devices such as iPhone are equipped with depth cameras, but the industry needs innovative, improved algorithms to produce an accurate 3D representation of a moving hand. Hence, accurate real-time human hand tracking represents a fertile area of advanced research and technology development, with no robust solution to date.** Toronto-based Xesto has developed a cloud-based machine learning platform to recognize and record gestures for use in gesture-based applications using depth map from Leap Motion and mobile devices with depth cameras. Xesto has built a prototype that currently requires a superior 3D representation of the hand, while leveraging robust hand detection algorithms on Xesto's device agnostic platform.** This project represents a collaboration between Professor Deepa Kundur and Xesto to improve the real time performance of hand tracking on mobile devices. Specifically, the project makes use of Xesto's RGB-D hand-pose detection and gesture recognition pipeline that is applicable to any depth sensor. The research aims to design a novel convolutional neural network architecture that uses temporal information to produce an accurate real-time heat map of hand-features. This problem has a high level of technical depth in estimating and optimizing the energy function that constructs articulable objects with large degrees of freedom, self-similar parts and is subject to self-occlusion. ** The proposed research is expected to have impact in the field of hand tracking providing Xesto a technological advantage to develop superior applications for health, retail and automotive industry. Further, this work will grant each mobile device user a new way to interact with their machines only through gestures.
随着手势识别工具的兴起,人机交互正在迅速发展。有几种最先进的算法可以解决这个问题,但是没有令人信服的结果可以跟踪运动、定位手和解释手势。Leap Motion专注于手部跟踪,但不能产生合适的手势检测和解释。像iPhone这样的移动设备配备了深度摄像头,但该行业需要创新的、改进的算法来生成移动手的精确3D表示。因此,准确的实时人手跟踪代表了先进研究和技术发展的肥沃领域,迄今为止还没有强大的解决方案。**总部位于多伦多的Xesto开发了一个基于云的机器学习平台,可以识别和记录手势,用于使用Leap Motion的深度图和带有深度摄像头的移动设备的基于手势的应用程序。Xesto已经建立了一个原型,目前需要一个卓越的手部3D表示,同时利用Xesto的设备不可知平台上强大的手部检测算法。**该项目是Deepa Kundur教授和Xesto之间的合作,旨在提高移动设备上手部跟踪的实时性能。具体来说,该项目利用了Xesto的RGB-D手部姿势检测和手势识别管道,适用于任何深度传感器。本研究旨在设计一种新颖的卷积神经网络架构,利用时间信息生成准确的实时手部特征热图。该问题在构建具有大自由度、自相似部件和自遮挡的可关节物体的能量函数估计和优化方面具有很高的技术深度。**拟议的研究预计将对手部跟踪领域产生影响,为Xesto提供技术优势,以开发健康,零售和汽车行业的卓越应用。此外,这项工作将为每个移动设备用户提供一种仅通过手势与他们的机器交互的新方法。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Kundur, Deepa其他文献

Wireless image sensor networks: event acquisition in attack-prone and uncertain environments
A Game-Theoretic Analysis of Cyber Switching Attacks and Mitigation in Smart Grid Systems
  • DOI:
    10.1109/tsg.2015.2440095
  • 发表时间:
    2016-07-01
  • 期刊:
  • 影响因子:
    9.6
  • 作者:
    Farraj, Abdallah;Hammad, Eman;Kundur, Deepa
  • 通讯作者:
    Kundur, Deepa
A Cyber-Physical Control Framework for Transient Stability in Smart Grids
  • DOI:
    10.1109/tsg.2016.2581588
  • 发表时间:
    2018-03-01
  • 期刊:
  • 影响因子:
    9.6
  • 作者:
    Farraj, Abdallah;Hammad, Eman;Kundur, Deepa
  • 通讯作者:
    Kundur, Deepa
Analysis and design of secure watermark-based authentication systems
Noise Suppression of Corona Current Measurement From HVdc Transmission Lines
HVdc 输电线路电晕电流测量的噪声抑制

Kundur, Deepa的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Kundur, Deepa', 18)}}的其他基金

Detection of Cyber-Physical Attacks on Digital Substation Protection
数字化变电站保护网络物理攻击检测
  • 批准号:
    DGDND-2022-05346
  • 财政年份:
    2022
  • 资助金额:
    $ 1.82万
  • 项目类别:
    DND/NSERC Discovery Grant Supplement
Detection of Cyber-Physical Attacks on Digital Substation Protection
数字化变电站保护网络物理攻击检测
  • 批准号:
    RGPIN-2022-05346
  • 财政年份:
    2022
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
Cyber-Physical Security of the Smart Grid
智能电网的网络物理安全
  • 批准号:
    227722-2013
  • 财政年份:
    2021
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
Cyber-Physical Security of the Smart Grid
智能电网的网络物理安全
  • 批准号:
    227722-2013
  • 财政年份:
    2020
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
Cyber-Physical Security of the Smart Grid
智能电网的网络物理安全
  • 批准号:
    227722-2013
  • 财政年份:
    2019
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
Advanced IT/OT convergence methods for secure power grid control
用于安全电网控制的先进 IT/OT 融合方法
  • 批准号:
    506429-2017
  • 财政年份:
    2019
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Strategic Projects - Group
Cyber-Physical Security of the Smart Grid
智能电网的网络物理安全
  • 批准号:
    227722-2013
  • 财政年份:
    2018
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
Advanced IT/OT convergence methods for secure power grid control
用于安全电网控制的先进 IT/OT 融合方法
  • 批准号:
    506429-2017
  • 财政年份:
    2018
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Strategic Projects - Group
Cyber-Physical Security of the Smart Grid
智能电网的网络物理安全
  • 批准号:
    227722-2013
  • 财政年份:
    2017
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
Advanced IT/OT convergence methods for secure power grid control
用于安全电网控制的先进 IT/OT 融合方法
  • 批准号:
    506429-2017
  • 财政年份:
    2017
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Strategic Projects - Group

相似海外基金

CDS&E: Detection, Instance Segmentation, and Classification for Astronomical Surveys with Deep Learning (DeepDISC)
CDS
  • 批准号:
    2308174
  • 财政年份:
    2023
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Standard Grant
3D Indoor Instance Segmentation, Detection and Size Estimation based on Deep Neural Networks
基于深度神经网络的 3D 室内实例分割、检测和尺寸估计
  • 批准号:
    573292-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 1.82万
  • 项目类别:
    University Undergraduate Student Research Awards
Towards Accurate Detection, Segmentation, and Tracking of Objects and other Scene Attributes
实现对象和其他场景属性的准确检测、分割和跟踪
  • 批准号:
    RGPIN-2021-04248
  • 财政年份:
    2022
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
Elements: An ML Ecosystem of Filament Detection: Classification, Localization, and Segmentation
元素:细丝检测的 ML 生态系统:分类、定位和细分
  • 批准号:
    2209912
  • 财政年份:
    2022
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Standard Grant
Improved defect detection and segmentation in inspections
改进检查中的缺陷检测和分割
  • 批准号:
    562683-2021
  • 财政年份:
    2021
  • 资助金额:
    $ 1.82万
  • 项目类别:
    University Undergraduate Student Research Awards
Towards Accurate Detection, Segmentation, and Tracking of Objects and other Scene Attributes
实现对象和其他场景属性的准确检测、分割和跟踪
  • 批准号:
    RGPIN-2021-04248
  • 财政年份:
    2021
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
Investigating the Roadmap from Cellular Image Segmentation to Cancer Biomarker Detection
研究从细胞图像分割到癌症生物标志物检测的路线图
  • 批准号:
    491638-2015
  • 财政年份:
    2017
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Vanier Canada Graduate Scholarship Tri-Council - Doctoral 3 years
RI: Small: Object Detection, Pose Estimation, and Semantic Segmentation Using 3D Wireframe Models
RI:小:使用 3D 线框模型进行物体检测、姿势估计和语义分割
  • 批准号:
    1527340
  • 财政年份:
    2015
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Continuing Grant
Pedestrian detection and segmentation in videos captured by cameras exhibiting large, uncontrolled motion
摄像机拍摄的视频中的行人检测和分割呈现出较大的、不受控制的运动
  • 批准号:
    486268-2015
  • 财政年份:
    2015
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Engage Grants Program
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了