Photonic technologies for high-capacity optical communications

用于高容量光通信的光子技术

基本信息

  • 批准号:
    RGPIN-2015-05960
  • 负责人:
  • 金额:
    $ 4.88万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2018
  • 资助国家:
    加拿大
  • 起止时间:
    2018-01-01 至 2019-12-31
  • 项目状态:
    已结题

项目摘要

In this new millennium, people and intelligent devices are constantly interacting through untethered RF links and reconfigurable networks. These communication networks handle enormous amounts of data that must be harvested from mobile users, processed in highly interconnected data centers, and transmitted on optical fiber communication conduits already burdened with burgeoning traditional data traffic. To enable the information age, telecommunication engineers have been innovating at a rapid pace for many decades, delivering many successive generations of systems with increased data rates, capacity and connectivity. Users are usually unaware of the tremendous technological challenges that this unstoppable revolution poses to scientists designing networks around the world.****In this research program, we are investigating how to overcome current limitations of high speed communications in optical fiber networks by reinventing the optical fiber channel. Our research proposes to carry data on parallel channels, with the same wavelength, by cleverly designing fibers that multiply the number of cores in single fiber strand or allow transmission on orthogonal modes in a single core. Furthermore, we are studying microstructured fibers, with air holes, to help optimize the fiber properties and extend the current communication spectral window. In the first research axis, our focus is on fundamental fiber properties, such as scattering loss and cross-talk caused by surface roughness, that currently limit the maximum transmission distance of these innovative optical fibers. In the second axis, we examine erbium-doped optical fiber designs to make power efficient amplifiers for these communication links. Finally, in the third axis, we will research all-fiber devices to couple and filter light into the mode channels.*****This research program takes advantage of the colocation of an optical communication laboratory, with state-of-the-art test equipment, and of a fiber fabrication infrastructure that is unique in Canada. This close proximity allows easy access to optical fiber prototyping and provides a unique opportunity to make high impact research in optical fiber communication technologies. Canada has a strong photonic industry, encompassing large telecommunication equipment manufacturers as well as small high-tech businesses that must constantly innovate to maintain their leadership position. In addition to its anticipated research outputs, this research program will provide a high quality training environment for young researchers who will be well prepared to join this dynamic industrial sector.*********
在这个新的千年,人们和智能设备不断通过无线射频链路和可重构网络进行交互。这些通信网络处理大量数据,这些数据必须从移动的用户收集,在高度互连的数据中心中处理,并在光纤通信管道上传输,而光纤通信管道已经承受了蓬勃发展的传统数据流量。为了实现信息时代,电信工程师几十年来一直在快速创新,提供了连续几代具有更高数据速率、容量和连接性的系统。用户通常没有意识到这场不可阻挡的革命给世界各地设计网络的科学家带来了巨大的技术挑战。在这项研究计划中,我们正在研究如何通过重新发明光纤通道来克服光纤网络中高速通信的当前限制。我们的研究建议通过巧妙地设计光纤,使单个光纤束中的芯数成倍增加,或者允许在单个芯中的正交模式上传输,从而在具有相同波长的并行信道上传输数据。此外,我们正在研究带有空气孔的微结构光纤,以帮助优化光纤性能并扩展当前的通信光谱窗口。在第一个研究轴中,我们的重点是基本的光纤特性,如散射损耗和表面粗糙度引起的串扰,目前限制了这些创新光纤的最大传输距离。在第二个轴,我们研究掺铒光纤设计,使这些通信链路的功率效率放大器。最后,在第三轴,我们将研究全光纤器件,以耦合和过滤光进入模式通道。该研究计划利用了光通信实验室的托管,拥有最先进的测试设备,以及加拿大独一无二的光纤制造基础设施。这种紧密的距离可以方便地获得光纤原型,并为光纤通信技术的高影响力研究提供了独特的机会。加拿大拥有强大的光子产业,其中包括大型电信设备制造商以及小型高科技企业,这些企业必须不断创新才能保持其领导地位。除了预期的研究成果外,该研究计划还将为年轻研究人员提供高质量的培训环境,他们将为加入这个充满活力的工业部门做好充分准备。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

LaRochelle, Sophie其他文献

Mode-conversion-based silicon photonic modulator loaded by a combination of lateral and interleaved p-n junctions
  • DOI:
    10.1364/prj.414400
  • 发表时间:
    2021-04-01
  • 期刊:
  • 影响因子:
    7.6
  • 作者:
    Jafari, Omid;Zhalehpour, Sasan;LaRochelle, Sophie
  • 通讯作者:
    LaRochelle, Sophie
Multi-parameter sensor based on stimulated Brillouin scattering in inverse-parabolic graded-index fiber
  • DOI:
    10.1364/ol.41.001138
  • 发表时间:
    2016-03-15
  • 期刊:
  • 影响因子:
    3.6
  • 作者:
    Xu, Yanping;Ren, Meiqi;LaRochelle, Sophie
  • 通讯作者:
    LaRochelle, Sophie
Non-Reciprocal Sub-Micron Waveguide Raman Amplifiers, Towards Loss-Less Silicon Photonics
Machine Learning Implementation for Unambiguous Refractive Index Measurement Using a Self-Referenced Fiber Refractometer
  • DOI:
    10.1109/jsen.2022.3183475
  • 发表时间:
    2022-07-15
  • 期刊:
  • 影响因子:
    4.3
  • 作者:
    Martinez-Manuel, Rodolfo;Valentin-Coronado, Luis M.;LaRochelle, Sophie
  • 通讯作者:
    LaRochelle, Sophie
FBG-Based Matched Filters for Optical Processing of RF Signals
  • DOI:
    10.1109/jphot.2012.2198805
  • 发表时间:
    2012-06-01
  • 期刊:
  • 影响因子:
    2.4
  • 作者:
    Dastmalchi, Mansour;Doucet, Serge;LaRochelle, Sophie
  • 通讯作者:
    LaRochelle, Sophie

LaRochelle, Sophie的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('LaRochelle, Sophie', 18)}}的其他基金

Advanced Photonic Technologies for Communications (CRC- APTEC)
先进光子通信技术 (CRC- APTEC)
  • 批准号:
    CRC-2018-00184
  • 财政年份:
    2022
  • 资助金额:
    $ 4.88万
  • 项目类别:
    Canada Research Chairs
Photonics devices for optical communications and sensing
用于光通信和传感的光子器件
  • 批准号:
    RGPIN-2020-04266
  • 财政年份:
    2022
  • 资助金额:
    $ 4.88万
  • 项目类别:
    Discovery Grants Program - Individual
Advanced Photonic Technologies For Communications (Crc- Aptec)
先进的通信光子技术 (Crc- Aptec)
  • 批准号:
    CRC-2018-00184
  • 财政年份:
    2021
  • 资助金额:
    $ 4.88万
  • 项目类别:
    Canada Research Chairs
Photonics devices for optical communications and sensing
用于光通信和传感的光子器件
  • 批准号:
    RGPIN-2020-04266
  • 财政年份:
    2021
  • 资助金额:
    $ 4.88万
  • 项目类别:
    Discovery Grants Program - Individual
Optical Glass Amplifiers for High Capacity Networks
用于高容量网络的光学玻璃放大器
  • 批准号:
    538379-2018
  • 财政年份:
    2021
  • 资助金额:
    $ 4.88万
  • 项目类别:
    Collaborative Research and Development Grants
Photonics devices for optical communications and sensing
用于光通信和传感的光子器件
  • 批准号:
    RGPIN-2020-04266
  • 财政年份:
    2020
  • 资助金额:
    $ 4.88万
  • 项目类别:
    Discovery Grants Program - Individual
Optical Glass Amplifiers for High Capacity Networks
用于高容量网络的光学玻璃放大器
  • 批准号:
    538379-2018
  • 财政年份:
    2020
  • 资助金额:
    $ 4.88万
  • 项目类别:
    Collaborative Research and Development Grants
Novel multicore erbium-doped fibers for spatially integrated optical amplifiers
用于空间集成光放大器的新型多芯掺铒光纤
  • 批准号:
    515551-2017
  • 财政年份:
    2018
  • 资助金额:
    $ 4.88万
  • 项目类别:
    Collaborative Research and Development Grants
Advanced Photonics Technologies for Emerging Communication Strategies
用于新兴通信策略的先进光子技术
  • 批准号:
    1000227525-2011
  • 财政年份:
    2018
  • 资助金额:
    $ 4.88万
  • 项目类别:
    Canada Research Chairs
Novel multicore erbium-doped fibers for spatially integrated optical amplifiers
用于空间集成光放大器的新型多芯掺铒光纤
  • 批准号:
    515551-2017
  • 财政年份:
    2017
  • 资助金额:
    $ 4.88万
  • 项目类别:
    Collaborative Research and Development Grants

相似海外基金

Collaborative Research: CNS Core: Small: Efficient Ways to Enlarge Practical DNA Storage Capacity by Integrating Bio-Computer Technologies
合作研究:中枢神经系统核心:小型:通过集成生物计算机技术扩大实用 DNA 存储容量的有效方法
  • 批准号:
    2343863
  • 财政年份:
    2023
  • 资助金额:
    $ 4.88万
  • 项目类别:
    Standard Grant
Collaborative Research: EPIIC: Cultivating Innovation and Research Capacity for Life Sustaining Emerging Technologies (CIRCLET)
合作研究:EPIIC:培养生命维持新兴技术的创新和研究能力(CIRCLET)
  • 批准号:
    2332944
  • 财政年份:
    2023
  • 资助金额:
    $ 4.88万
  • 项目类别:
    Standard Grant
Collaborative Research: EPIIC: Cultivating Innovation and Research Capacity for Life Sustaining Emerging Technologies (CIRCLET)
合作研究:EPIIC:培养生命维持新兴技术的创新和研究能力(CIRCLET)
  • 批准号:
    2332942
  • 财政年份:
    2023
  • 资助金额:
    $ 4.88万
  • 项目类别:
    Standard Grant
Collaborative Research: EPIIC: Cultivating Innovation and Research Capacity for Life Sustaining Emerging Technologies (CIRCLET)
合作研究:EPIIC:培养生命维持新兴技术的创新和研究能力(CIRCLET)
  • 批准号:
    2332943
  • 财政年份:
    2023
  • 资助金额:
    $ 4.88万
  • 项目类别:
    Standard Grant
Synthetic vascularization and regeneration in engineered tissues
工程组织中的合成血管化和再生
  • 批准号:
    10566387
  • 财政年份:
    2023
  • 资助金额:
    $ 4.88万
  • 项目类别:
A holistic approach in patient management and epidemic surveillance through convergence of diagnostic technologies, capacity building and stakeholder engagement (HoliCare)
通过诊断技术、能力建设和利益相关者参与的融合,采用整体方法进行患者管理和流行病监测(HoliCare)
  • 批准号:
    10044479
  • 财政年份:
    2022
  • 资助金额:
    $ 4.88万
  • 项目类别:
    EU-Funded
A holistic approach in patient management and epidemic surveillance through convergence of diagnostic technologies, capacity building and stakeholder engagement
通过诊断技术、能力建设和利益相关者参与的融合,采用整体方法进行患者管理和流行病监测
  • 批准号:
    10049786
  • 财政年份:
    2022
  • 资助金额:
    $ 4.88万
  • 项目类别:
    EU-Funded
Collaborative Research: CNS Core: Small: Efficient Ways to Enlarge Practical DNA Storage Capacity by Integrating Bio-Computer Technologies
合作研究:中枢神经系统核心:小型:通过集成生物计算机技术扩大实用 DNA 存储容量的有效方法
  • 批准号:
    2204656
  • 财政年份:
    2022
  • 资助金额:
    $ 4.88万
  • 项目类别:
    Standard Grant
Strengthening Research Capacity in Innovative Global Health Technologies for Non-Communicable Diseases in Uganda
加强乌干达非传染性疾病创新全球卫生技术的研究能力
  • 批准号:
    10469877
  • 财政年份:
    2022
  • 资助金额:
    $ 4.88万
  • 项目类别:
Collaborative Research: CNS Core: Small: Efficient Ways to Enlarge Practical DNA Storage Capacity by Integrating Bio-Computer Technologies
合作研究:中枢神经系统核心:小型:通过集成生物计算机技术扩大实用 DNA 存储容量的有效方法
  • 批准号:
    2204657
  • 财政年份:
    2022
  • 资助金额:
    $ 4.88万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了