Aspects of the coarse geometry of discrete groups
离散群的粗略几何的各个方面
基本信息
- 批准号:RGPIN-2018-06841
- 负责人:
- 金额:$ 1.46万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2018
- 资助国家:加拿大
- 起止时间:2018-01-01 至 2019-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The proposed research program aims to advance the understanding of discrete groups by regarding them as geometric objects. This is part of Gromov's program of studying quasi-isometry properties of groups and their relations to algebraic properties. The proposal has particular emphasis on groups acting on non-positively curved spaces as hyperbolic and relatively hyperbolic groups, small cancellation groups, CAT(0) groups, among others. The proposal has three general objectives:***1. To understand the classes of nonpositively curved groups that are closed under taking finitely presented subgroups and the relation to dimension. In particular, to identify combinatorial conditions on G-complexes implying properties of the subgroup structure of the group G. We propose to use techniques from algebraic topology that have not been fully explored in the study of coherence and local quasiconvexity. Specifically, the use of L^2 Betti numbers in the study of coherence and local quasiconvexity, and the use of Bredon modules over the orbit category in relation with homological isoperimetric inequalities. These are tools that the Principal Investigator (and its collaborators) have recently introduced to the study of subgroups of non-positively curved groups. The use of these tools is novel in the area and several aspects remain to be explored. We expect our investigations to shed some light into outstanding questions in the area as residual finiteness.***2. To advance the study of homological approaches to define quasi-isometry invariants. The emphasis here is to continue to develop the theory of homological higher dimensional Dehn functions. Recently, Hanlon and the PI exhibited an algebraic approach to these invariants and used it to obtain results on the subgroup structure of certain classes of discrete groups. There are several directions to further develop the study of these invariants in connection with the study of subgroups of discrete groups. We expect that our algebraic approach to filling functions will reveal new connections between homological and coarse geometric group invariants.***3. Classical combinatorial games on graphs have versions that yield quasi-isometry invariants of infinite graphs, and hence invariants of finitely generated groups (via Cayley graphs). The relation between these quasi-isometry invariants and the theory of discrete groups is mostly unexplored. We plan to investigate these relations. Current work in progress suggests new characterizations of hyperbolic groups; relations between splittings of groups and containment games; and certain aspects of amenability seem to be related to particular games. These investigations will create bridges between the community in game theory on graphs, and geometric group theorists.
拟议的研究计划旨在通过将离散群视为几何对象来增进对离散群的理解。这是格罗莫夫研究群的拟等距性质及其与代数性质的关系的计划的一部分。该提案特别强调作用于非正弯曲空间的群,如双曲群和相对双曲群、小抵消群、CAT(0) 群等。该提案具有三个总体目标:***1。理解在有限子群的情况下封闭的非正弯曲群的类别以及与维数的关系。特别是,为了识别 G 复形上暗示群 G 的子群结构性质的组合条件。我们建议使用代数拓扑中的技术,这些技术在相干性和局部拟凸性的研究中尚未得到充分探索。具体来说,在相干性和局部拟凸性研究中使用 L^2 Betti 数,以及在与同调等周不等式相关的轨道类别上使用 Bredon 模。这些是首席研究员(及其合作者)最近引入的用于非正弯曲群的子群研究的工具。这些工具的使用在该领域是新颖的,并且有几个方面仍有待探索。我们希望我们的调查能够为该领域的剩余有限性等突出问题提供一些线索。***2。推进定义准等距不变量的同调方法的研究。 这里的重点是继续发展同调高维Dehn函数的理论。最近,Hanlon 和 PI 展示了处理这些不变量的代数方法,并用它获得了某些离散群类别的子群结构的结果。结合离散群的子群的研究,有几个方向可以进一步发展这些不变量的研究。我们期望我们的填充函数代数方法将揭示同调和粗几何群不变量之间的新联系。***3。图上的经典组合博弈具有产生无限图的准等距不变量的版本,从而产生有限生成群的不变量(通过凯莱图)。这些准等距不变量与离散群理论之间的关系大多未被探索。我们计划调查这些关系。目前正在进行的工作提出了双曲群的新特征;群体分裂与遏制博弈之间的关系;舒适性的某些方面似乎与特定的游戏有关。这些研究将在图博弈论界和几何群论学家之间架起桥梁。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
MartinezPedroza, Eduardo其他文献
MartinezPedroza, Eduardo的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('MartinezPedroza, Eduardo', 18)}}的其他基金
Aspects of the coarse geometry of discrete groups
离散群的粗略几何的各个方面
- 批准号:
RGPIN-2018-06841 - 财政年份:2022
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
Aspects of the coarse geometry of discrete groups
离散群的粗略几何的各个方面
- 批准号:
RGPIN-2018-06841 - 财政年份:2021
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
Aspects of the coarse geometry of discrete groups
离散群的粗略几何的各个方面
- 批准号:
RGPIN-2018-06841 - 财政年份:2020
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
Aspects of the coarse geometry of discrete groups
离散群的粗略几何的各个方面
- 批准号:
RGPIN-2018-06841 - 财政年份:2019
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
Aspects of Non-positively Curved Groups
非正曲群的方面
- 批准号:
418456-2012 - 财政年份:2017
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
Aspects of Non-positively Curved Groups
非正曲群的方面
- 批准号:
418456-2012 - 财政年份:2015
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
Aspects of Non-positively Curved Groups
非正曲群的方面
- 批准号:
418456-2012 - 财政年份:2014
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
Aspects of Non-positively Curved Groups
非正曲群的方面
- 批准号:
418456-2012 - 财政年份:2013
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
Aspects of Non-positively Curved Groups
非正曲群的方面
- 批准号:
418456-2012 - 财政年份:2012
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
相似海外基金
Coarse graining methods in nonequilibrium thermodynamics: Systematization and exploration using information geometry
非平衡热力学中的粗粒化方法:利用信息几何的系统化和探索
- 批准号:
23KJ0732 - 财政年份:2023
- 资助金额:
$ 1.46万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Aspects of the coarse geometry of discrete groups
离散群的粗略几何的各个方面
- 批准号:
RGPIN-2018-06841 - 财政年份:2022
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
Thermodynamic inequalities under coarse-graining
粗粒度下的热力学不等式
- 批准号:
22K13974 - 财政年份:2022
- 资助金额:
$ 1.46万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Aspects of the coarse geometry of discrete groups
离散群的粗略几何的各个方面
- 批准号:
RGPIN-2018-06841 - 财政年份:2021
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
Coarse Geometry of Topological Groups
拓扑群的粗略几何
- 批准号:
2204849 - 财政年份:2021
- 资助金额:
$ 1.46万 - 项目类别:
Continuing Grant
Aspects of the coarse geometry of discrete groups
离散群的粗略几何的各个方面
- 批准号:
RGPIN-2018-06841 - 财政年份:2020
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
無限次元ユニタリ群に関連したPolish群の総合的研究
与无限维酉群有关的波兰群的综合研究
- 批准号:
20K03647 - 财政年份:2020
- 资助金额:
$ 1.46万 - 项目类别:
Grant-in-Aid for Scientific Research (C)