Topological optimization of porous solids

多孔固体的拓扑优化

基本信息

  • 批准号:
    537121-2018
  • 负责人:
  • 金额:
    $ 0.91万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Engage Plus Grants Program
  • 财政年份:
    2018
  • 资助国家:
    加拿大
  • 起止时间:
    2018-01-01 至 2019-12-31
  • 项目状态:
    已结题

项目摘要

The prequel of this proposal focused on the analysis of the topological blueprint of 3D reticulated solids (e.g.,**trabecular bone). Topology (a study of place, Greek) as opposed to morphology (a study of shape), refers to the**way in which the components of a whole are related to each other, regardless of their size, shape and scale. For**example, the topologies of a river bed and of a branching blood vessel are similar; the topologies of a bicycle**wheel and of a steering wheel are different. Topological blueprint is fundamental for mechanical properties,**behavior and purpose of the structure. In the case of trabecular bone, it plays a critical role in optimizing bone**strength while at the same time minimizing its weight and reducing its cost of maintenance for the organism.**Among human-made engineered structures, topology is rarely taken into account, but the implications of**suboptimal topology can be partially compensated for by using expensive materials, larger amounts of material,**or more sophisticated assemblages of the elements within the structure. Following lessons learned from the**study of trabecular bone topology, this project uses biomimetic topology-based design for generation of**light-weight and strong structures that can be scaled to any size and manufactured for a variety of engineering**applications, from prosthetic medical devices to civil engineering. As we learned from trabecular bone, its**natural, function-driven topological optimization is slow and iterative. Here, we suggest to accelerate and**refine the process of topological optimization of architected artificial structures with the aid of artificial**intelligence (deep learning - neural network-based algorithm) where basic principles are borrowed from bone**biology. This is an example of reverse-engineering of a highly effective structure that has been refined by**millions of years of evolution.
该提案的前传重点是分析3D网状固体的拓扑蓝图(例如**小梁骨)。与形态学(形状的研究)相反,拓扑(对地方,希腊语)是指整体组成部分相互关联的**方式,无论其大小,形状和规模如何。例如,例如,河床和分支血管的拓扑相似。自行车**车轮和方向盘的拓扑不同。拓扑蓝图是机械性能,**的行为和目的的基础。在小梁骨的情况下,它在优化骨骼**强度方面起着至关重要的作用,同时最大程度地减少其重量并降低其对生物体的维护成本。从小梁骨拓扑的**研究中学到的经验教训后,该项目使用基于仿生拓扑的设计来生成**轻巧和强大的结构,这些结构可以缩放到任何规模,并为各种工程**应用,从假肢医疗设备到土木工程。正如我们从小梁骨中学到的那样,它的自然,功能驱动的拓扑优化是缓慢且迭代的。在这里,我们建议借助人工**智能(深度学习 - 基于神经网络的算法)加速和**完善构建的人工结构的拓扑优化过程,其中基本原理是从骨**生物学借用的。这是一个高效结构的反向工程的一个例子,该结构已通过**数百万年的进化来完善。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

McKee, Marc其他文献

McKee, Marc的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('McKee, Marc', 18)}}的其他基金

Protein-mineral interactions at the organic-inorganic interface in biominerals
生物矿物质中有机-无机界面的蛋白质-矿物质相互作用
  • 批准号:
    RGPIN-2022-03238
  • 财政年份:
    2022
  • 资助金额:
    $ 0.91万
  • 项目类别:
    Discovery Grants Program - Individual
Protein-mineral interactions at the organic-inorganic interface in biominerals
生物矿物质中有机-无机界面的蛋白质-矿物质相互作用
  • 批准号:
    RGPIN-2016-05031
  • 财政年份:
    2021
  • 资助金额:
    $ 0.91万
  • 项目类别:
    Discovery Grants Program - Individual
Protein-mineral interactions at the organic-inorganic interface in biominerals
生物矿物质中有机-无机界面的蛋白质-矿物质相互作用
  • 批准号:
    RGPIN-2016-05031
  • 财政年份:
    2020
  • 资助金额:
    $ 0.91万
  • 项目类别:
    Discovery Grants Program - Individual
Cryo-liftout system for preparing in situ lamellae in cryo-FIBSEM
用于在冷冻 FIBSEM 中原位制备片层的冷冻提出系统
  • 批准号:
    RTI-2021-00391
  • 财政年份:
    2020
  • 资助金额:
    $ 0.91万
  • 项目类别:
    Research Tools and Instruments
Protein-mineral interactions at the organic-inorganic interface in biominerals
生物矿物质中有机-无机界面的蛋白质-矿物质相互作用
  • 批准号:
    RGPIN-2016-05031
  • 财政年份:
    2018
  • 资助金额:
    $ 0.91万
  • 项目类别:
    Discovery Grants Program - Individual
Topological characterization of porous solids
多孔固体的拓扑表征
  • 批准号:
    530047-2018
  • 财政年份:
    2018
  • 资助金额:
    $ 0.91万
  • 项目类别:
    Engage Grants Program
Protein-mineral interactions at the organic-inorganic interface in biominerals
生物矿物质中有机-无机界面的蛋白质-矿物质相互作用
  • 批准号:
    RGPIN-2016-05031
  • 财政年份:
    2017
  • 资助金额:
    $ 0.91万
  • 项目类别:
    Discovery Grants Program - Individual
Protein-mineral interactions at the organic-inorganic interface in biominerals
生物矿物质中有机-无机界面的蛋白质-矿物质相互作用
  • 批准号:
    RGPIN-2016-05031
  • 财政年份:
    2016
  • 资助金额:
    $ 0.91万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

基于显式拓扑描述的多功能多孔结构拓扑优化方法
  • 批准号:
    62372401
  • 批准年份:
    2023
  • 资助金额:
    50.00 万元
  • 项目类别:
    面上项目
多尺度多孔介质多场耦合反应输运过程的拓扑优化模型、方法及机理
  • 批准号:
    52376074
  • 批准年份:
    2023
  • 资助金额:
    51 万元
  • 项目类别:
    面上项目
轻质多孔结构找形问题的非线性多尺度拓扑优化
  • 批准号:
    12302147
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
拓扑优化仿生设计PEEK骨内植入物多孔结构促进界面骨长入作用及其机制研究
  • 批准号:
    82202725
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
空天飞行器多孔夹芯拉胀超材料等几何拓扑优化设计研究
  • 批准号:
    52105255
  • 批准年份:
    2021
  • 资助金额:
    24.00 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Fabrication and Structural Optimization of Hierarchically Porous Carbon Materials by Using Stereolithography 3D Printing
利用立体光刻3D打印制备多级孔碳材料并优化其结构
  • 批准号:
    21K14709
  • 财政年份:
    2021
  • 资助金额:
    $ 0.91万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Optimization of loop heat pipe heat transfer performance using self-adaptive porous structures
自适应多孔结构环路热管传热性能优化
  • 批准号:
    20K14666
  • 财政年份:
    2020
  • 资助金额:
    $ 0.91万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Optimization of poling condition for porous piezoelectric material made by sol-gel composite technique
溶胶-凝胶复合技术制备多孔压电材料极化条件的优化
  • 批准号:
    19K04493
  • 财政年份:
    2019
  • 资助金额:
    $ 0.91万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Robust topology optimization of innovative porous structures by 3D-printer of continuous fiber reinforced plastics
通过连续纤维增强塑料 3D 打印机对创新多孔结构进行鲁棒拓扑优化
  • 批准号:
    19H00781
  • 财政年份:
    2019
  • 资助金额:
    $ 0.91万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Optimization of porous transport layer in carbon-free polymer electrolyte membrane electrolyzers for improved hydrogen infrastructure
优化无碳聚合物电解质膜电解槽中的多孔传输层以改善氢基础设施
  • 批准号:
    518777-2018
  • 财政年份:
    2019
  • 资助金额:
    $ 0.91万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了