Topological optimization of porous solids
多孔固体的拓扑优化
基本信息
- 批准号:537121-2018
- 负责人:
- 金额:$ 0.91万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Engage Plus Grants Program
- 财政年份:2018
- 资助国家:加拿大
- 起止时间:2018-01-01 至 2019-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The prequel of this proposal focused on the analysis of the topological blueprint of 3D reticulated solids (e.g.,**trabecular bone). Topology (a study of place, Greek) as opposed to morphology (a study of shape), refers to the**way in which the components of a whole are related to each other, regardless of their size, shape and scale. For**example, the topologies of a river bed and of a branching blood vessel are similar; the topologies of a bicycle**wheel and of a steering wheel are different. Topological blueprint is fundamental for mechanical properties,**behavior and purpose of the structure. In the case of trabecular bone, it plays a critical role in optimizing bone**strength while at the same time minimizing its weight and reducing its cost of maintenance for the organism.**Among human-made engineered structures, topology is rarely taken into account, but the implications of**suboptimal topology can be partially compensated for by using expensive materials, larger amounts of material,**or more sophisticated assemblages of the elements within the structure. Following lessons learned from the**study of trabecular bone topology, this project uses biomimetic topology-based design for generation of**light-weight and strong structures that can be scaled to any size and manufactured for a variety of engineering**applications, from prosthetic medical devices to civil engineering. As we learned from trabecular bone, its**natural, function-driven topological optimization is slow and iterative. Here, we suggest to accelerate and**refine the process of topological optimization of architected artificial structures with the aid of artificial**intelligence (deep learning - neural network-based algorithm) where basic principles are borrowed from bone**biology. This is an example of reverse-engineering of a highly effective structure that has been refined by**millions of years of evolution.
本提案的前传重点分析了三维网状实体(例如,**小梁骨)的拓扑蓝图。拓扑学(希腊语,研究地点)与形态学(研究形状)相对,指的是一个整体的组成部分相互联系的方式,而不考虑它们的大小、形状和规模。例如,河床和分支血管的拓扑结构是相似的;自行车车轮和方向盘的拓扑结构是不同的。拓扑图是结构力学性能、性能和用途的基础。在小梁骨的情况下,它在优化骨强度方面起着关键作用,同时最大限度地减少其重量并降低其对生物体的维护成本。在人造工程结构中,拓扑很少被考虑在内,但次优拓扑的影响可以通过使用昂贵的材料、更大量的材料、或更复杂的结构内元素组合来部分补偿。根据从小梁骨拓扑研究中吸取的经验教训,该项目使用基于仿生拓扑的设计来生成轻量化和坚固的结构,这些结构可以按比例缩放到任何尺寸,并用于各种工程应用,从假肢医疗设备到土木工程。正如我们从小梁骨中了解到的那样,它的自然、功能驱动的拓扑优化是缓慢和迭代的。在这里,我们建议在人工智能(深度学习-基于神经网络的算法)的帮助下,加速和细化结构化人工结构的拓扑优化过程,其中基本原理借鉴了骨生物学。这是一个经过数百万年的进化而完善的高效结构的逆向工程的例子。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
McKee, Marc其他文献
McKee, Marc的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('McKee, Marc', 18)}}的其他基金
Protein-mineral interactions at the organic-inorganic interface in biominerals
生物矿物质中有机-无机界面的蛋白质-矿物质相互作用
- 批准号:
RGPIN-2022-03238 - 财政年份:2022
- 资助金额:
$ 0.91万 - 项目类别:
Discovery Grants Program - Individual
Protein-mineral interactions at the organic-inorganic interface in biominerals
生物矿物质中有机-无机界面的蛋白质-矿物质相互作用
- 批准号:
RGPIN-2016-05031 - 财政年份:2021
- 资助金额:
$ 0.91万 - 项目类别:
Discovery Grants Program - Individual
Protein-mineral interactions at the organic-inorganic interface in biominerals
生物矿物质中有机-无机界面的蛋白质-矿物质相互作用
- 批准号:
RGPIN-2016-05031 - 财政年份:2020
- 资助金额:
$ 0.91万 - 项目类别:
Discovery Grants Program - Individual
Cryo-liftout system for preparing in situ lamellae in cryo-FIBSEM
用于在冷冻 FIBSEM 中原位制备片层的冷冻提出系统
- 批准号:
RTI-2021-00391 - 财政年份:2020
- 资助金额:
$ 0.91万 - 项目类别:
Research Tools and Instruments
Protein-mineral interactions at the organic-inorganic interface in biominerals
生物矿物质中有机-无机界面的蛋白质-矿物质相互作用
- 批准号:
RGPIN-2016-05031 - 财政年份:2018
- 资助金额:
$ 0.91万 - 项目类别:
Discovery Grants Program - Individual
Topological characterization of porous solids
多孔固体的拓扑表征
- 批准号:
530047-2018 - 财政年份:2018
- 资助金额:
$ 0.91万 - 项目类别:
Engage Grants Program
Protein-mineral interactions at the organic-inorganic interface in biominerals
生物矿物质中有机-无机界面的蛋白质-矿物质相互作用
- 批准号:
RGPIN-2016-05031 - 财政年份:2017
- 资助金额:
$ 0.91万 - 项目类别:
Discovery Grants Program - Individual
Protein-mineral interactions at the organic-inorganic interface in biominerals
生物矿物质中有机-无机界面的蛋白质-矿物质相互作用
- 批准号:
RGPIN-2016-05031 - 财政年份:2016
- 资助金额:
$ 0.91万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
基于异构医学影像数据的深度挖掘技术及中枢神经系统重大疾病的精准预测
- 批准号:61672236
- 批准年份:2016
- 资助金额:64.0 万元
- 项目类别:面上项目
内容分发网络中的P2P分群分发技术研究
- 批准号:61100238
- 批准年份:2011
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
微生物发酵过程的自组织建模与优化控制
- 批准号:60704036
- 批准年份:2007
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
天然生物材料的多尺度力学与仿生研究
- 批准号:10732050
- 批准年份:2007
- 资助金额:200.0 万元
- 项目类别:重点项目
供应链管理中的稳健型(Robust)策略分析和稳健型优化(Robust Optimization )方法研究
- 批准号:70601028
- 批准年份:2006
- 资助金额:7.0 万元
- 项目类别:青年科学基金项目
气动/结构耦合动力学系统目标敏感性分析的快速准确计算方法及优化设计研究
- 批准号:10402036
- 批准年份:2004
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Fabrication and Structural Optimization of Hierarchically Porous Carbon Materials by Using Stereolithography 3D Printing
利用立体光刻3D打印制备多级孔碳材料并优化其结构
- 批准号:
21K14709 - 财政年份:2021
- 资助金额:
$ 0.91万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Optimization of loop heat pipe heat transfer performance using self-adaptive porous structures
自适应多孔结构环路热管传热性能优化
- 批准号:
20K14666 - 财政年份:2020
- 资助金额:
$ 0.91万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Optimization of poling condition for porous piezoelectric material made by sol-gel composite technique
溶胶-凝胶复合技术制备多孔压电材料极化条件的优化
- 批准号:
19K04493 - 财政年份:2019
- 资助金额:
$ 0.91万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Robust topology optimization of innovative porous structures by 3D-printer of continuous fiber reinforced plastics
通过连续纤维增强塑料 3D 打印机对创新多孔结构进行鲁棒拓扑优化
- 批准号:
19H00781 - 财政年份:2019
- 资助金额:
$ 0.91万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Optimization of porous transport layer in carbon-free polymer electrolyte membrane electrolyzers for improved hydrogen infrastructure
优化无碳聚合物电解质膜电解槽中的多孔传输层以改善氢基础设施
- 批准号:
518777-2018 - 财政年份:2019
- 资助金额:
$ 0.91万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Optimization of porous transport layer in carbon-free polymer electrolyte membrane electrolyzers for improved hydrogen infrastructure
优化无碳聚合物电解质膜电解槽中的多孔传输层以改善氢基础设施
- 批准号:
518777-2018 - 财政年份:2018
- 资助金额:
$ 0.91万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Multiobjective optimization of drug delivery efficacy using in nano-porous materials
纳米多孔材料药物输送功效的多目标优化
- 批准号:
496281-2016 - 财政年份:2016
- 资助金额:
$ 0.91万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's
Optimization system of custom made porous metal artificial bone
定制多孔金属人工骨的优化系统
- 批准号:
15K12557 - 财政年份:2015
- 资助金额:
$ 0.91万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
Optimization of heated swirling flow in a disk shape porous channel for planar-type SOFC
平面型SOFC圆盘状多孔通道内加热旋流流优化
- 批准号:
26420123 - 财政年份:2014
- 资助金额:
$ 0.91万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Numerical optimization of porous surfaces to reduce trailing-edge noise
多孔表面的数值优化以减少后缘噪声
- 批准号:
209951091 - 财政年份:2012
- 资助金额:
$ 0.91万 - 项目类别:
Research Grants














{{item.name}}会员




