Geometry of fractals and vector calculus on fractals
分形几何和分形矢量微积分
基本信息
- 批准号:238549-2012
- 负责人:
- 金额:$ 0.87万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2018
- 资助国家:加拿大
- 起止时间:2018-01-01 至 2019-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Most people have encountered beautiful pictorial depictions of fractals at one point or another. However, it may come as a surprise to many that fractals play a useful role in scientific areas such as data compression, analyzing stream networks and modelling other physical phenomena. The defining characteristic of a fractal is its self-similarity. That is, small bits of a fractal bear a striking resemblance to the entire fractal. Many natural phenomena have this same type of scaling behaviour, but usually only as an approximation. However, it is often a good enough approximation to be descriptively or predictively useful and so fractals have found their way into most areas of science.** This research project has two main themes, both involving fractals, with the respective goals of a better understanding of the geometry of fractals and building new calculus tools to use when applying fractal-based models. In the first theme a very fine analysis of the geometry of Cantor sets will be undertaken. This is a continuing program to obtain a complete characterization of the Hausdorff and packing measures and dimensions of very general Cantor sets, in particular subsets of the real line. For linear Cantor sets, the approach is to relate the geometry to the asymptotics of the "gaps". In the second theme the new calculus tools will be fractal analogues of the tools from classical calculus such as various types of derivatives and integrals. In this research program, the approach will be to use iterated function systems (IFS) as a constructive tool. In previous work IFS have proven to be useful in describing and constructing fractals in many different contexts. The method will be to adapt the IFS framework to the desired calculus construction, starting with curvatures for fractal curves and differential forms for fractal surfaces and then higher-dimensional analogues of these.** An important outcome of the project will be practical and efficient algorithms to be used in computations involving calculus on fractals. These algorithms will make it possible for scientists to use fractal models more efficiently. This is a primary reason for using IFS methods, as they naturally lead to computational algorithms.****
大多数人在某一点或另一点上都遇到过美丽的分形图像描述。然而,对于许多人来说,分形在数据压缩、分析流网络和模拟其他物理现象等科学领域发挥着有用的作用,这可能会让他们感到惊讶。分形的定义特征是它的自相似性。也就是说,分形的一小部分与整个分形有着惊人的相似之处。许多自然现象都有这种相同的尺度行为,但通常只是近似的。然而,它通常是一个足够好的近似值,可以用于描述或预测,因此分形已经进入了大多数科学领域。**本研究项目有两个主要主题,都涉及分形,各自的目标是更好地理解分形的几何形状,并在应用基于分形的模型时构建新的微积分工具。在第一个主题中,将对康托集的几何进行非常细致的分析。这是一个得到非常一般的Cantor集,特别是实线子集的Hausdorff和包装测度和维数的完整表征的连续程序。对于线性康托集,方法是将几何与“间隙”的渐近性联系起来。在第二个主题中,新的微积分工具将是经典微积分工具的分形类似物,例如各种类型的导数和积分。在这个研究项目中,方法将是使用迭代函数系统(IFS)作为一个建设性的工具。在以前的工作中,IFS已被证明在许多不同的环境中描述和构建分形是有用的。该方法将使IFS框架适应所需的微积分构造,从分形曲线的曲率和分形曲面的微分形式开始,然后是它们的高维类似物。**该项目的一个重要成果将是用于分形微积分计算的实用而有效的算法。这些算法将使科学家更有效地使用分形模型成为可能。这是使用IFS方法的主要原因,因为它们自然会导致计算算法。****
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mendivil, Franklin其他文献
Stochastic disease spreading and containment policies under state-dependent probabilities.
- DOI:
10.1007/s00199-023-01496-y - 发表时间:
2023-04-12 - 期刊:
- 影响因子:1.3
- 作者:
La Torre, Davide;Marsiglio, Simone;Mendivil, Franklin;Privileggi, Fabio - 通讯作者:
Privileggi, Fabio
Mendivil, Franklin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mendivil, Franklin', 18)}}的其他基金
Zeta functions in fractal geometry and analysis
分形几何和分析中的 Zeta 函数
- 批准号:
RGPIN-2019-05237 - 财政年份:2022
- 资助金额:
$ 0.87万 - 项目类别:
Discovery Grants Program - Individual
Zeta functions in fractal geometry and analysis
分形几何和分析中的 Zeta 函数
- 批准号:
RGPIN-2019-05237 - 财政年份:2021
- 资助金额:
$ 0.87万 - 项目类别:
Discovery Grants Program - Individual
Zeta functions in fractal geometry and analysis
分形几何和分析中的 Zeta 函数
- 批准号:
RGPIN-2019-05237 - 财政年份:2020
- 资助金额:
$ 0.87万 - 项目类别:
Discovery Grants Program - Individual
Zeta functions in fractal geometry and analysis
分形几何和分析中的 Zeta 函数
- 批准号:
RGPIN-2019-05237 - 财政年份:2019
- 资助金额:
$ 0.87万 - 项目类别:
Discovery Grants Program - Individual
Improved automatic pronunciation feedback for English learners, with focus on prosodic correction
改进了英语学习者的自动发音反馈,重点是韵律纠正
- 批准号:
501557-2016 - 财政年份:2016
- 资助金额:
$ 0.87万 - 项目类别:
Engage Plus Grants Program
Geometry of fractals and vector calculus on fractals
分形几何和分形矢量微积分
- 批准号:
238549-2012 - 财政年份:2015
- 资助金额:
$ 0.87万 - 项目类别:
Discovery Grants Program - Individual
Improved automatic pronunciation feedback for English learners
改进了英语学习者的自动发音反馈
- 批准号:
488458-2015 - 财政年份:2015
- 资助金额:
$ 0.87万 - 项目类别:
Engage Grants Program
Geometry of fractals and vector calculus on fractals
分形几何和分形矢量微积分
- 批准号:
238549-2012 - 财政年份:2014
- 资助金额:
$ 0.87万 - 项目类别:
Discovery Grants Program - Individual
Geometry of fractals and vector calculus on fractals
分形几何和分形矢量微积分
- 批准号:
238549-2012 - 财政年份:2013
- 资助金额:
$ 0.87万 - 项目类别:
Discovery Grants Program - Individual
Geometry of fractals and vector calculus on fractals
分形几何和分形矢量微积分
- 批准号:
238549-2012 - 财政年份:2012
- 资助金额:
$ 0.87万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
分形上的分析及其应用
- 批准号:10471150
- 批准年份:2004
- 资助金额:15.0 万元
- 项目类别:面上项目
相似海外基金
Geometry of fractals and vector calculus on fractals
分形几何和分形矢量微积分
- 批准号:
238549-2012 - 财政年份:2015
- 资助金额:
$ 0.87万 - 项目类别:
Discovery Grants Program - Individual
Geometry of fractals and vector calculus on fractals
分形几何和分形矢量微积分
- 批准号:
238549-2012 - 财政年份:2014
- 资助金额:
$ 0.87万 - 项目类别:
Discovery Grants Program - Individual
Geometry of fractals and vector calculus on fractals
分形几何和分形矢量微积分
- 批准号:
238549-2012 - 财政年份:2013
- 资助金额:
$ 0.87万 - 项目类别:
Discovery Grants Program - Individual
Geometry of fractals and vector calculus on fractals
分形几何和分形矢量微积分
- 批准号:
238549-2012 - 财政年份:2012
- 资助金额:
$ 0.87万 - 项目类别:
Discovery Grants Program - Individual
Fractal Regulatory Function of the Circadian System
昼夜节律系统的分形调节功能
- 批准号:
8046427 - 财政年份:2010
- 资助金额:
$ 0.87万 - 项目类别:
Fractal Regulatory Function of the Circadian System
昼夜节律系统的分形调节功能
- 批准号:
7873392 - 财政年份:2010
- 资助金额:
$ 0.87万 - 项目类别:
Reconstruction and Mapping of Human Brain Vasculature
人脑脉管系统的重建和绘图
- 批准号:
7860671 - 财政年份:2009
- 资助金额:
$ 0.87万 - 项目类别:
Integrated Interdisciplinary Training in Computational Neuroscience
计算神经科学综合跨学科培训
- 批准号:
7293610 - 财政年份:2006
- 资助金额:
$ 0.87万 - 项目类别: