Exploiting Hardware Heterogeneity for Efficient Execution of Emerging Applications
利用硬件异构性高效执行新兴应用程序
基本信息
- 批准号:RGPIN-2018-06514
- 负责人:
- 金额:$ 2.04万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2018
- 资助国家:加拿大
- 起止时间:2018-01-01 至 2019-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The proposed work will develop computing systems that will address the urgent need for performance and energy efficiency. This research will impact future energy consumption, energy costs, and greenhouse gas emissions, and will consequently lead to significant economic and environmental benefits for Canadians. The major emphasis of this work is on building future power and energy-efficient systems that can significantly improve the efficiency of execution for many important applications in of computer vision, artificial intelligence, bioinformatics, and web search. Our research aims to achieve this energy efficiency by using heterogeneous computational systems with different types of hardware-based accelerators. The key uniqueness of this approach is both the breadth and depth of techniques we will apply across the whole systems stack: hardware-based acceleration, data compression, and in-memory computation. In most geographical locations (including Canada) there is shortage of highly qualified personnel (HQPs) in the computer architecture and systems fields. This program will train many HQPs in computing systems who will gain important skills in computer architecture, systems, performance analysis, compilers, low-level and systems programming, and programming existing hardware accelerators, such as graphics processing units (GPUs) and field-programmable gate-arrays (FPGAs). ******This program consists of several major research directions.******1. We aim to identify the right programming models and tuning/mapping algorithms for the most efficient use of existing hardware accelerators. Currently, the burden of doing so falls almost entirely on individual application developers. ******2. We will search for efficient hardware and software optimizations to improve the resource and memory use of modern hardware accelerators in emerging applications such as deep neural network (DNNs). In particular, DNN training is a process that requires large amounts of memory that are not available even in state-of-the-art GPU accelerators. We will leverage our expertise in energy- and performance-efficient data compression and encoding to significantly reduce the memory consumption of existing DNN training algorithms. ******3. We will explore the potential of more radical optimizations that would include (but are not limited to) (1) lossy compression and (2) direct execution on compressed data, which would allow to improve both performance and energy efficiency even further.
拟议的工作将开发计算机系统,以满足对性能和能源效率的迫切需求。这项研究将影响未来的能源消耗、能源成本和温室气体排放,从而为加拿大人带来显著的经济和环境效益。这项工作的主要重点是构建未来的节能系统,这些系统可以显著提高计算机视觉、人工智能、生物信息学和网络搜索等许多重要应用的执行效率。我们的研究旨在通过使用具有不同类型的基于硬件的加速器的异类计算系统来实现这种能源效率。这种方法的主要独特性在于我们将在整个系统堆栈中应用的技术的广度和深度:基于硬件的加速、数据压缩和内存计算。在大多数地理位置(包括加拿大),计算机体系结构和系统领域缺乏高素质的人员。该计划将培训许多计算机系统方面的HQP,他们将在计算机体系结构、系统、性能分析、编译器、低级和系统编程以及对现有硬件加速器编程(如图形处理单元(GPU)和现场可编程门阵列(FGA))编程方面获得重要技能。*本计划由几个主要研究方向组成。*1.我们的目标是确定正确的编程模型和调优/映射算法,以最有效地利用现有的硬件加速器。目前,这样做的负担几乎完全落在个别应用程序开发人员身上。*2.我们将寻求高效的硬件和软件优化,以提高深度神经网络(DNNS)等新兴应用中现代硬件加速器的资源和内存利用率。特别是,DNN训练是一个需要大量内存的过程,即使在最先进的GPU加速器中也无法获得。我们将利用我们在高能效和高性能数据压缩和编码方面的专业知识,显著减少现有DNN训练算法的内存消耗。*3.我们将探索更彻底的优化的可能性,包括(但不限于)(1)有损压缩和(2)直接对压缩数据执行,这将允许进一步提高性能和能源效率。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Pekhimenko, Gennady其他文献
Pekhimenko, Gennady的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Pekhimenko, Gennady', 18)}}的其他基金
Exploiting Hardware Heterogeneity for Efficient Execution of Emerging Applications
利用硬件异构性高效执行新兴应用程序
- 批准号:
RGPIN-2018-06514 - 财政年份:2022
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual
Efficient Compiler-Driven Pointer Compression
高效的编译器驱动的指针压缩
- 批准号:
543706-2019 - 财政年份:2021
- 资助金额:
$ 2.04万 - 项目类别:
Collaborative Research and Development Grants
Exploiting Hardware Heterogeneity for Efficient Execution of Emerging Applications
利用硬件异构性高效执行新兴应用程序
- 批准号:
RGPIN-2018-06514 - 财政年份:2021
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual
Efficient Distributed DNN Training and Inference
高效的分布式 DNN 训练和推理
- 批准号:
543833-2019 - 财政年份:2021
- 资助金额:
$ 2.04万 - 项目类别:
Collaborative Research and Development Grants
Efficient Compiler-Driven Pointer Compression
高效的编译器驱动的指针压缩
- 批准号:
543706-2019 - 财政年份:2020
- 资助金额:
$ 2.04万 - 项目类别:
Collaborative Research and Development Grants
Efficient Distributed DNN Training and Inference
高效的分布式 DNN 训练和推理
- 批准号:
543833-2019 - 财政年份:2020
- 资助金额:
$ 2.04万 - 项目类别:
Collaborative Research and Development Grants
Efficient Memory Footprint Reduction for Java Performance
有效减少内存占用以提高 Java 性能
- 批准号:
531328-2018 - 财政年份:2020
- 资助金额:
$ 2.04万 - 项目类别:
Collaborative Research and Development Grants
Exploiting Hardware Heterogeneity for Efficient Execution of Emerging Applications
利用硬件异构性高效执行新兴应用程序
- 批准号:
RGPIN-2018-06514 - 财政年份:2020
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual
Efficient Memory Footprint Reduction for Java Performance
有效减少内存占用以提高 Java 性能
- 批准号:
531328-2018 - 财政年份:2019
- 资助金额:
$ 2.04万 - 项目类别:
Collaborative Research and Development Grants
Exploiting Hardware Heterogeneity for Efficient Execution of Emerging Applications
利用硬件异构性高效执行新兴应用程序
- 批准号:
522575-2018 - 财政年份:2019
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Accelerator Supplements
相似海外基金
Exploiting Hardware Heterogeneity for Efficient Execution of Emerging Applications
利用硬件异构性高效执行新兴应用程序
- 批准号:
RGPIN-2018-06514 - 财政年份:2022
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual
Exploiting Hardware Heterogeneity for Efficient Execution of Emerging Applications
利用硬件异构性高效执行新兴应用程序
- 批准号:
RGPIN-2018-06514 - 财政年份:2021
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual
Collaborative Research: CNS Core: Medium: Exploiting Synergies Between Machine-Learning Algorithms and Hardware Heterogeneity for High-Performance and Reliable Manycore Computing
合作研究:CNS Core:Medium:利用机器学习算法和硬件异构性之间的协同作用实现高性能和可靠的众核计算
- 批准号:
1955353 - 财政年份:2020
- 资助金额:
$ 2.04万 - 项目类别:
Continuing Grant
Collaborative Research: CNS Core: Medium: Exploiting Synergies Between Machine-Learning Algorithms and Hardware Heterogeneity for High-Performance and Reliable Manycore Computing
合作研究:CNS Core:Medium:利用机器学习算法和硬件异构性之间的协同作用实现高性能和可靠的众核计算
- 批准号:
1955196 - 财政年份:2020
- 资助金额:
$ 2.04万 - 项目类别:
Continuing Grant
Exploiting Hardware Heterogeneity for Efficient Execution of Emerging Applications
利用硬件异构性高效执行新兴应用程序
- 批准号:
RGPIN-2018-06514 - 财政年份:2020
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual
Exploiting Hardware Heterogeneity for Efficient Execution of Emerging Applications
利用硬件异构性高效执行新兴应用程序
- 批准号:
522575-2018 - 财政年份:2019
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Accelerator Supplements
Exploiting Hardware Heterogeneity for Efficient Execution of Emerging Applications
利用硬件异构性高效执行新兴应用程序
- 批准号:
RGPIN-2018-06514 - 财政年份:2019
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual
SHF: Medium: Embracing Architectural Heterogeneity through Hardware-Software Co-design
SHF:中:通过硬件软件协同设计拥抱架构异构性
- 批准号:
1763681 - 财政年份:2018
- 资助金额:
$ 2.04万 - 项目类别:
Continuing Grant
Exploiting Hardware Heterogeneity for Efficient Execution of Emerging Applications
利用硬件异构性高效执行新兴应用程序
- 批准号:
DGECR-2018-00036 - 财政年份:2018
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Launch Supplement
Exploiting Hardware Heterogeneity for Efficient Execution of Emerging Applications
利用硬件异构性高效执行新兴应用程序
- 批准号:
522575-2018 - 财政年份:2018
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Accelerator Supplements