SHF: Medium: Embracing Architectural Heterogeneity through Hardware-Software Co-design
SHF:中:通过硬件软件协同设计拥抱架构异构性
基本信息
- 批准号:1763681
- 负责人:
- 金额:$ 100万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-06-01 至 2023-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The last decade has witnessed a proliferation of heterogeneity across diverse application domains spanning from high-end datacenters to low-cost embedded systems, because they are capable of better performance and energy efficiency compared to homogeneous multicore architectures. These systems typically include a subset of CPUs, GPUs, FPGAs and ASICs as compute engines and hence, present unique programming/resource management challenges. However, the lack of required compiler and runtime support, present a barrier to the widespread adoption of heterogeneous systems. Furthermore, the design of the underlying heterogeneous architecture in terms of number and placement of various compute engines, memory subsystems and interconnects for a given area/power budget to satiate various application demands, is not fully explored. Therefore, it is imperative to investigate the entire system stack in a cohesive manner spanning applications, system software and underlying hardware for providing the required support for efficient application executions. Thus, the main goal of this research project is to enable dynamic mapping of an application to different computing engines for improving performance/power efficiency and system utilization. The outcomes of this project are poised to change the way the programmers and users perceive heterogeneity and interact with it. The research on heterogeneous computing will be integrated with the educational activities and student training at Penn State for nurturing the future workforce in science and engineering, with active participation of female graduate students and undergraduates (Honors) students. The project consists four tasks. Task-I aims at conducting a profile-based workload characterization for various application domains including deep learning, cloud computing and high-performance computing on diverse hardware platforms to understand their performance/power utility. This will be used to develop a machine-learning (ML) based model for initial assignment of tasks to different compute engines. Task-II is aimed at exploring compiler/programming support to transform application code into suitable device-agnostic 'codelets', that serve as the granularity for seamless scheduling and execution across different hardware units. Task-III investigates runtime support to optimally schedule and seamlessly move the codelets across the hardware units for improving system performance. Finally, Task-IV explores design of heterogeneous platforms by analyzing issues such as degree of heterogeneity, placement and integration of various computing engines on a chip and across chips, the underlying communication support.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在过去的十年中,从高端嵌入式系统到低成本嵌入式系统,各种应用领域的异构性激增,因为与同构多核架构相比,它们能够实现更好的性能和能效。这些系统通常包括CPU、GPU、FPGA和ASIC的子集作为计算引擎,因此存在独特的编程/资源管理挑战。然而,缺乏所需的编译器和运行时支持,提出了广泛采用异构系统的障碍。此外,在给定面积/功率预算的各种计算引擎、存储器子系统和互连的数量和放置方面的底层异构体系结构的设计以满足各种应用需求没有被充分探索。因此,有必要以一种内聚的方式研究整个系统堆栈,包括应用程序、系统软件和底层硬件,以便为有效的应用程序执行提供所需的支持。 因此,本研究项目的主要目标是实现应用程序到不同计算引擎的动态映射,以提高性能/功率效率和系统利用率。该项目的成果有望改变程序员和用户对异质性的认知和互动方式。异构计算的研究将与宾夕法尼亚州立大学的教育活动和学生培训相结合,以培养未来的科学和工程劳动力,女性研究生和本科生(荣誉)学生的积极参与。 该项目包括四项任务。Task-I旨在为各种应用领域(包括深度学习、云计算和不同硬件平台上的高性能计算)进行基于配置文件的工作负载表征,以了解其性能/功率效用。这将用于开发基于机器学习(ML)的模型,用于将任务初始分配给不同的计算引擎。 任务II旨在探索编译器/编程支持,以将应用程序代码转换为合适的设备无关的“代码集”,作为跨不同硬件单元的无缝调度和执行的粒度。任务III研究运行时支持,以优化调度并在硬件单元之间无缝移动codelet,从而提高系统性能。最后,Task-IV通过分析异构程度、芯片上和芯片间各种计算引擎的放置和集成、底层通信支持等问题,探索异构平台的设计。该奖项反映了NSF的法定使命,通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(19)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Getting more performance with polymorphism from emerging memory technologies
- DOI:10.1145/3319647.3325826
- 发表时间:2019-05
- 期刊:
- 影响因子:0
- 作者:Iyswarya Narayanan;Aishwarya Ganesan;Anirudh Badam;Sriram Govindan;Bikash Sharma;A. Sivasubramaniam
- 通讯作者:Iyswarya Narayanan;Aishwarya Ganesan;Anirudh Badam;Sriram Govindan;Bikash Sharma;A. Sivasubramaniam
Pushing Point Cloud Compression to the Edge
- DOI:10.1109/micro56248.2022.00031
- 发表时间:2022-10
- 期刊:
- 影响因子:0
- 作者:Ziyu Ying;Shulin Zhao;Sandeepa Bhuyan;Cyan Subhra Mishra;M. Kandemir;C. Das
- 通讯作者:Ziyu Ying;Shulin Zhao;Sandeepa Bhuyan;Cyan Subhra Mishra;M. Kandemir;C. Das
SplitRPC: A {Control + Data} Path Splitting RPC Stack for ML Inference Serving
- DOI:10.1145/3589974
- 发表时间:2023-05
- 期刊:
- 影响因子:0
- 作者:Adithya Kumar;A. Sivasubramaniam;T. Zhu
- 通讯作者:Adithya Kumar;A. Sivasubramaniam;T. Zhu
CASH: compiler assisted hardware design for improving DRAM energy efficiency in CNN inference
- DOI:10.1145/3357526.3357536
- 发表时间:2019-09
- 期刊:
- 影响因子:0
- 作者:Anup Sarma;Huaipan Jiang;Ashutosh Pattnaik;Jagadish B. Kotra;M. Kandemir;C. Das
- 通讯作者:Anup Sarma;Huaipan Jiang;Ashutosh Pattnaik;Jagadish B. Kotra;M. Kandemir;C. Das
Optimizing CPU Performance for Recommendation Systems At-Scale
大规模优化推荐系统的 CPU 性能
- DOI:10.1145/3579371.3589112
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Jain, Rishabh;Cheng, Scott;Kalagi, Vishwas;Sanghavi, Vrushabh;Kaul, Samvit;Arunachalam, Meena;Maeng, Kiwan;Jog, Adwait;Sivasubramaniam, Anand;Kandemir, Mahmut Taylan
- 通讯作者:Kandemir, Mahmut Taylan
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Chitaranjan Das其他文献
Chitaranjan Das的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Chitaranjan Das', 18)}}的其他基金
SHF: Medium: Exploring an Edge Platform Design Trajectory for Next Generation XR Applications
SHF:中:探索下一代 XR 应用的边缘平台设计轨迹
- 批准号:
2211018 - 财政年份:2022
- 资助金额:
$ 100万 - 项目类别:
Continuing Grant
CNS Core: Small: Embracing cross stack heterogeneity in next-generation cloud platforms
CNS 核心:小型:在下一代云平台中拥抱跨堆栈异构性
- 批准号:
2116962 - 财政年份:2021
- 资助金额:
$ 100万 - 项目类别:
Standard Grant
SHF: Medium: A Technology-Architecture-Algorithm Co-Design Exploration of Scalable Spiking Neural Networks (SNNs)
SHF:Medium:可扩展尖峰神经网络 (SNN) 的技术-架构-算法协同设计探索
- 批准号:
1955815 - 财政年份:2020
- 资助金额:
$ 100万 - 项目类别:
Continuing Grant
CI-New: GEMDROID: A Comprehensive Platform for Studying Architectural Issues for Next Generation Mobile Systems
CI-New:GEMDROID:研究下一代移动系统架构问题的综合平台
- 批准号:
1629915 - 财政年份:2016
- 资助金额:
$ 100万 - 项目类别:
Standard Grant
CSR: Small: PROM in Clouds: Exploiting Scheduling for PeRformance OptiMization in Clouds
CSR:小型:云中的 PROM:利用云中的性能优化调度
- 批准号:
1320478 - 财政年份:2013
- 资助金额:
$ 100万 - 项目类别:
Standard Grant
SHF: Large:Collaborative Research: Architecting the Next Generation Memory Hierarchy - A Holistic Approach
SHF:大型:协作研究:构建下一代内存层次结构 - 整体方法
- 批准号:
1213052 - 财政年份:2012
- 资助金额:
$ 100万 - 项目类别:
Continuing Grant
II-NEW: INSpiRE: Infrastructure for heterogeNeous System ResEarch
II-新:INSpiRE:异构系统研究基础设施
- 批准号:
1205618 - 财政年份:2012
- 资助金额:
$ 100万 - 项目类别:
Standard Grant
CISE:CNS:EAGER: Exploring Managed Soft Computing for Data Intensive Applications
CISE:CNS:EAGER:探索数据密集型应用的托管软计算
- 批准号:
1152479 - 财政年份:2011
- 资助金额:
$ 100万 - 项目类别:
Standard Grant
EAGER: SHF: Harnessing Cross-Layer Heterogeneity for Future CMPs
EAGER:SHF:利用跨层异构性实现未来 CMP
- 批准号:
1147388 - 财政年份:2011
- 资助金额:
$ 100万 - 项目类别:
Standard Grant
Quality of Service (QoS) Provisioning in InfiniBand Architecture for System Area Networks
系统区域网络 InfiniBand 架构中的服务质量 (QoS) 配置
- 批准号:
0208734 - 财政年份:2002
- 资助金额:
$ 100万 - 项目类别:
Continuing Grant
相似海外基金
RII Track-4:@NASA: Bluer and Hotter: From Ultraviolet to X-ray Diagnostics of the Circumgalactic Medium
RII Track-4:@NASA:更蓝更热:从紫外到 X 射线对环绕银河系介质的诊断
- 批准号:
2327438 - 财政年份:2024
- 资助金额:
$ 100万 - 项目类别:
Standard Grant
Collaborative Research: Topological Defects and Dynamic Motion of Symmetry-breaking Tadpole Particles in Liquid Crystal Medium
合作研究:液晶介质中对称破缺蝌蚪粒子的拓扑缺陷与动态运动
- 批准号:
2344489 - 财政年份:2024
- 资助金额:
$ 100万 - 项目类别:
Standard Grant
Collaborative Research: AF: Medium: The Communication Cost of Distributed Computation
合作研究:AF:媒介:分布式计算的通信成本
- 批准号:
2402836 - 财政年份:2024
- 资助金额:
$ 100万 - 项目类别:
Continuing Grant
Collaborative Research: AF: Medium: Foundations of Oblivious Reconfigurable Networks
合作研究:AF:媒介:遗忘可重构网络的基础
- 批准号:
2402851 - 财政年份:2024
- 资助金额:
$ 100万 - 项目类别:
Continuing Grant
Collaborative Research: CIF: Medium: Snapshot Computational Imaging with Metaoptics
合作研究:CIF:Medium:Metaoptics 快照计算成像
- 批准号:
2403122 - 财政年份:2024
- 资助金额:
$ 100万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: Differentiable Hardware Synthesis
合作研究:SHF:媒介:可微分硬件合成
- 批准号:
2403134 - 财政年份:2024
- 资助金额:
$ 100万 - 项目类别:
Standard Grant
Collaborative Research: CyberTraining: Implementation: Medium: Training Users, Developers, and Instructors at the Chemistry/Physics/Materials Science Interface
协作研究:网络培训:实施:媒介:在化学/物理/材料科学界面培训用户、开发人员和讲师
- 批准号:
2321102 - 财政年份:2024
- 资助金额:
$ 100万 - 项目类别:
Standard Grant
Collaborative Research: CyberTraining: Implementation: Medium: Transforming the Molecular Science Research Workforce through Integration of Programming in University Curricula
协作研究:网络培训:实施:中:通过将编程融入大学课程来改变分子科学研究人员队伍
- 批准号:
2321045 - 财政年份:2024
- 资助金额:
$ 100万 - 项目类别:
Standard Grant
Collaborative Research: CyberTraining: Implementation: Medium: Training Users, Developers, and Instructors at the Chemistry/Physics/Materials Science Interface
协作研究:网络培训:实施:媒介:在化学/物理/材料科学界面培训用户、开发人员和讲师
- 批准号:
2321103 - 财政年份:2024
- 资助金额:
$ 100万 - 项目类别:
Standard Grant
Collaborative Research: CPS: Medium: Automating Complex Therapeutic Loops with Conflicts in Medical Cyber-Physical Systems
合作研究:CPS:中:自动化医疗网络物理系统中存在冲突的复杂治疗循环
- 批准号:
2322534 - 财政年份:2024
- 资助金额:
$ 100万 - 项目类别:
Standard Grant