géométrie et théorie spectrale
几何与光谱理论
基本信息
- 批准号:1000229993-2013
- 负责人:
- 金额:$ 7.29万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Canada Research Chairs
- 财政年份:2018
- 资助国家:加拿大
- 起止时间:2018-01-01 至 2019-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Geometric spectral theory is an area of mathematics that lies at the intersection of analysis, partial differential equations and differential geometry. To a large extent, it is motivated by questions originating in the study of real life phenomena, such as vibration, heat propagation, oscillations of fluids and quantum mechanical effects. The first part of the proposal is concerned with the spectral geometry of the Steklov problem. This eigenvalue problem, introduced by V. Steklov in 1902, has many important applications, but is still relatively unexplored by pure mathematicians. The proposed topics of research include the study of singular Steklov type problems, such as the sloshing problem; isospectrality and spectral invariants; nodal geometry of Steklov eigenfunctions. The second part of the proposal focuses on some questions arising in the study of spectral asymptotics of Laplace and Schrodinger operators.* *
几何光谱理论是数学领域,位于分析,部分微分方程和差异几何形状的交集。在很大程度上,它是由源于现实生活现象的研究的问题,例如振动,热传播,流体的振荡和量子机械效应。该提案的第一部分与Steklov问题的光谱几何形状有关。 V. Steklov于1902年引入的这个特征值问题具有许多重要的应用,但纯粹的数学家仍然相对尚未探索。拟议的研究主题包括研究奇异的steklov型问题,例如荡妇问题。 等光谱和光谱不变; steklov特征函数的淋巴结几何形状。该提案的第二部分重点是在Laplace和Schrodinger操作员的光谱渐近学研究中引起的一些问题。 * * * *
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Polterovich, Iosif其他文献
Shape optimization for low Neumann and Steklov eigenvalues
- DOI:
10.1002/mma.1222 - 发表时间:
2010-03-15 - 期刊:
- 影响因子:2.9
- 作者:
Girouard, Alexandre;Polterovich, Iosif - 通讯作者:
Polterovich, Iosif
Spectral geometry of the Steklov problem (survey article)
- DOI:
10.4171/jst/164 - 发表时间:
2017-01-01 - 期刊:
- 影响因子:1
- 作者:
Girouard, Alexandre;Polterovich, Iosif - 通讯作者:
Polterovich, Iosif
Polterovich, Iosif的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Polterovich, Iosif', 18)}}的其他基金
Spectral geometry and topology and their applications
谱几何和拓扑及其应用
- 批准号:
RGPIN-2017-05565 - 财政年份:2021
- 资助金额:
$ 7.29万 - 项目类别:
Discovery Grants Program - Individual
Spectral geometry and topology and their applications
谱几何和拓扑及其应用
- 批准号:
RGPIN-2017-05565 - 财政年份:2020
- 资助金额:
$ 7.29万 - 项目类别:
Discovery Grants Program - Individual
Spectral geometry and topology and their applications
谱几何和拓扑及其应用
- 批准号:
RGPIN-2017-05565 - 财政年份:2019
- 资助金额:
$ 7.29万 - 项目类别:
Discovery Grants Program - Individual
Spectral geometry and topology and their applications
谱几何和拓扑及其应用
- 批准号:
RGPIN-2017-05565 - 财政年份:2018
- 资助金额:
$ 7.29万 - 项目类别:
Discovery Grants Program - Individual
géométrie et théorie spectrale
几何与光谱理论
- 批准号:
1000229993-2013 - 财政年份:2017
- 资助金额:
$ 7.29万 - 项目类别:
Canada Research Chairs
Spectral geometry and topology and their applications
谱几何和拓扑及其应用
- 批准号:
RGPIN-2017-05565 - 财政年份:2017
- 资助金额:
$ 7.29万 - 项目类别:
Discovery Grants Program - Individual
Topics in geometric spectral theory
几何谱理论主题
- 批准号:
261570-2012 - 财政年份:2016
- 资助金额:
$ 7.29万 - 项目类别:
Discovery Grants Program - Individual
géométrie et théorie spectrale
几何与光谱理论
- 批准号:
1000229993-2013 - 财政年份:2016
- 资助金额:
$ 7.29万 - 项目类别:
Canada Research Chairs
géométrie et théorie spectrale
几何与光谱理论
- 批准号:
1229993-2013 - 财政年份:2015
- 资助金额:
$ 7.29万 - 项目类别:
Canada Research Chairs
Topics in geometric spectral theory
几何谱理论主题
- 批准号:
261570-2012 - 财政年份:2015
- 资助金额:
$ 7.29万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
医学生学习风格教学对策效果的双模型研究
- 批准号:71603269
- 批准年份:2016
- 资助金额:17.0 万元
- 项目类别:青年科学基金项目
基于PMP的混合动力公交车能量管理策略研究
- 批准号:51505173
- 批准年份:2015
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
广义散斑壳属真菌分类与系统发育学研究
- 批准号:31500019
- 批准年份:2015
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
基于聚类分析的高性能包分类技术研究
- 批准号:61502167
- 批准年份:2015
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
奇特原子核结构中的张量力效应
- 批准号:11305109
- 批准年份:2013
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Combinatoire et géométrie des variétés de Hessenberg
Hessenberg 品种组合与几何
- 批准号:
561709-2021 - 财政年份:2021
- 资助金额:
$ 7.29万 - 项目类别:
University Undergraduate Student Research Awards
géométrie et théorie spectrale
几何与光谱理论
- 批准号:
1000229993-2013 - 财政年份:2017
- 资助金额:
$ 7.29万 - 项目类别:
Canada Research Chairs
Solutions et géométrie des surfaces associées à des modèles intégrables supersymétriques (susy) avec applications en théorie des supercordes.
曲面关联的解决方案和几何模型以及可积超对称(susy)模型以及超弦理论的应用。
- 批准号:
454050-2014 - 财政年份:2016
- 资助金额:
$ 7.29万 - 项目类别:
Postdoctoral Fellowships
Approximation diophantienne et géométrie des nombres
近似丢番图和名称几何
- 批准号:
501305-2016 - 财政年份:2016
- 资助金额:
$ 7.29万 - 项目类别:
University Undergraduate Student Research Awards
géométrie et théorie spectrale
几何与光谱理论
- 批准号:
1000229993-2013 - 财政年份:2016
- 资助金额:
$ 7.29万 - 项目类别:
Canada Research Chairs