Spectral geometry and topology and their applications
谱几何和拓扑及其应用
基本信息
- 批准号:RGPIN-2017-05565
- 负责人:
- 金额:$ 3.13万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2020
- 资助国家:加拿大
- 起止时间:2020-01-01 至 2021-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Spectral problems lie at the core of the mathematical models of many physical phenomena, such as wave propagation, heat diffusion and quantum-mechanical effects. The research proposal is concerned with the investigation of geometric and topological properties of spectra and solutions of Laplace and Steklov type eigenvalue problems defined on geometric objects. We intend to explore spectral asymptotics for those problems on singular domains, aiming to develop new techniques and find answers to some long standing open questions with origins in hydrodynamics and quantum chaos. In particular, our approach should lead to a solution of the conjectures put forward by Fox and Kuttler in 1983 on the two-term asymptotics of the two-dimensional sloshing eigenvalues, representing the frequencies of fluid oscillations in a canal.
Several new directions of research in geometric spectral theory are outlined in the proposal. While the geometric properties of eigenfunctions have been actively studied for decades, rather little is known about the topological features of the solutions of spectral problems. We propose to study the topological properties of nodal and sublevel sets of Laplace eigenfunctions using a variety of methods, including the recently developed techniques of persistent homology. We also aim to broaden the scope of spectral geometry, which traditionally deals with differential and pseudodifferential operators, by investigating the geometric properties of eigenvalues and eigenfunctions of integral operators arising in potential theory.
The proposed research program opens up novel applications of spectral geometry and topology to some areas of computer science. Such applications have been rapidly emerging in recent years. In particular, spectral methods have been actively used in shape analysis and geometry processing. These fields have many real life applications, including computer animation and 3D printing. Most existing spectral algorithms make use of the data for the Laplace operator that "encodes'' the intrinsic geometry of an object. We aim to develop similar techniques that would allow to capture the extrinsic geometry of surfaces bounding regions in the Euclidean space. It appears that the appropriate tools for this purpose are provided by the spectral geometry of the Steklov problem and of a closely related integral operator called the single layer potential. This is an interdisciplinary project involving collaborators both in mathematics and computer science.
光谱问题是许多物理现象数学模型的核心,例如波传播、热扩散和量子力学效应。该研究计划涉及光谱的几何和拓扑性质的研究以及几何对象上定义的拉普拉斯和斯特克洛夫型特征值问题的解决方案。我们打算探索奇异域上这些问题的谱渐近性,旨在开发新技术并找到一些源于流体动力学和量子混沌的长期悬而未决的问题的答案。特别是,我们的方法应该能够解决 Fox 和 Kuttler 在 1983 年提出的关于二维晃动特征值(代表运河中流体振荡频率)的两项渐近性的猜想。
该提案概述了几何谱理论的几个新研究方向。 虽然本征函数的几何性质已经被积极研究了几十年,但对谱问题解的拓扑特征却知之甚少。我们建议使用各种方法研究拉普拉斯本征函数的节点和子级集的拓扑性质,包括最近开发的持久同调技术。 我们还旨在通过研究势论中出现的积分算子的特征值和特征函数的几何性质来扩大谱几何的范围,传统上处理微分和伪微分算子。
拟议的研究计划开辟了光谱几何和拓扑在计算机科学某些领域的新颖应用。此类应用近年来迅速兴起。特别是,光谱方法已被积极地应用于形状分析和几何处理。这些领域在现实生活中有许多应用,包括计算机动画和 3D 打印。大多数现有的谱算法利用拉普拉斯算子的数据来“编码”物体的内在几何形状。我们的目标是开发类似的技术,允许捕获欧几里德空间中表面边界区域的外在几何形状。看来,Steklov 问题的谱几何和称为单层势的密切相关的积分算子的谱几何提供了用于此目的的适当工具。 这是一个跨学科项目,涉及数学和计算机科学领域的合作者。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Polterovich, Iosif其他文献
Shape optimization for low Neumann and Steklov eigenvalues
- DOI:
10.1002/mma.1222 - 发表时间:
2010-03-15 - 期刊:
- 影响因子:2.9
- 作者:
Girouard, Alexandre;Polterovich, Iosif - 通讯作者:
Polterovich, Iosif
Spectral geometry of the Steklov problem (survey article)
- DOI:
10.4171/jst/164 - 发表时间:
2017-01-01 - 期刊:
- 影响因子:1
- 作者:
Girouard, Alexandre;Polterovich, Iosif - 通讯作者:
Polterovich, Iosif
Polterovich, Iosif的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Polterovich, Iosif', 18)}}的其他基金
Spectral geometry and topology and their applications
谱几何和拓扑及其应用
- 批准号:
RGPIN-2017-05565 - 财政年份:2021
- 资助金额:
$ 3.13万 - 项目类别:
Discovery Grants Program - Individual
Spectral geometry and topology and their applications
谱几何和拓扑及其应用
- 批准号:
RGPIN-2017-05565 - 财政年份:2019
- 资助金额:
$ 3.13万 - 项目类别:
Discovery Grants Program - Individual
Spectral geometry and topology and their applications
谱几何和拓扑及其应用
- 批准号:
RGPIN-2017-05565 - 财政年份:2018
- 资助金额:
$ 3.13万 - 项目类别:
Discovery Grants Program - Individual
géométrie et théorie spectrale
几何与光谱理论
- 批准号:
1000229993-2013 - 财政年份:2018
- 资助金额:
$ 3.13万 - 项目类别:
Canada Research Chairs
géométrie et théorie spectrale
几何与光谱理论
- 批准号:
1000229993-2013 - 财政年份:2017
- 资助金额:
$ 3.13万 - 项目类别:
Canada Research Chairs
Spectral geometry and topology and their applications
谱几何和拓扑及其应用
- 批准号:
RGPIN-2017-05565 - 财政年份:2017
- 资助金额:
$ 3.13万 - 项目类别:
Discovery Grants Program - Individual
Topics in geometric spectral theory
几何谱理论主题
- 批准号:
261570-2012 - 财政年份:2016
- 资助金额:
$ 3.13万 - 项目类别:
Discovery Grants Program - Individual
géométrie et théorie spectrale
几何与光谱理论
- 批准号:
1000229993-2013 - 财政年份:2016
- 资助金额:
$ 3.13万 - 项目类别:
Canada Research Chairs
géométrie et théorie spectrale
几何与光谱理论
- 批准号:
1229993-2013 - 财政年份:2015
- 资助金额:
$ 3.13万 - 项目类别:
Canada Research Chairs
Topics in geometric spectral theory
几何谱理论主题
- 批准号:
261570-2012 - 财政年份:2015
- 资助金额:
$ 3.13万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
2019年度国际理论物理中心-ICTP School on Geometry and Gravity (smr 3311)
- 批准号:11981240404
- 批准年份:2019
- 资助金额:1.5 万元
- 项目类别:国际(地区)合作与交流项目
新型IIIB、IVB 族元素手性CGC金属有机化合物(Constrained-Geometry Complexes)的合成及反应性研究
- 批准号:20602003
- 批准年份:2006
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
相似海外基金
CAREER: Geometry and topology of quantum materials
职业:量子材料的几何和拓扑
- 批准号:
2340394 - 财政年份:2024
- 资助金额:
$ 3.13万 - 项目类别:
Continuing Grant
On combinatorics, the algebra, topology, and geometry of a new class of graphs that generalize ordinary and ribbon graphs
关于组合学、一类新图的代数、拓扑和几何,概括了普通图和带状图
- 批准号:
24K06659 - 财政年份:2024
- 资助金额:
$ 3.13万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Conference: The 2024 Graduate Student Topology and Geometry Conference
会议:2024年研究生拓扑与几何会议
- 批准号:
2348932 - 财政年份:2024
- 资助金额:
$ 3.13万 - 项目类别:
Standard Grant
Stable Homotopy Theory in Algebra, Topology, and Geometry
代数、拓扑和几何中的稳定同伦理论
- 批准号:
2414922 - 财政年份:2024
- 资助金额:
$ 3.13万 - 项目类别:
Standard Grant
CAREER: Topology, Spectral Geometry, and Arithmetic of Locally Symmetric Spaces
职业:拓扑、谱几何和局部对称空间算术
- 批准号:
2338933 - 财政年份:2024
- 资助金额:
$ 3.13万 - 项目类别:
Continuing Grant
Computational topology and geometry for systems biology
系统生物学的计算拓扑和几何
- 批准号:
EP/Z531224/1 - 财政年份:2024
- 资助金额:
$ 3.13万 - 项目类别:
Research Grant
Conference: Richmond Geometry Meeting: Geometric Topology and Moduli
会议:里士满几何会议:几何拓扑和模数
- 批准号:
2349810 - 财政年份:2024
- 资助金额:
$ 3.13万 - 项目类别:
Standard Grant
Discovery-Driven Mathematics and Artificial Intelligence for Biosciences and Drug Discovery
用于生物科学和药物发现的发现驱动数学和人工智能
- 批准号:
10551576 - 财政年份:2023
- 资助金额:
$ 3.13万 - 项目类别:
Interactions between geometry, topology, number theory, and dynamics
几何、拓扑、数论和动力学之间的相互作用
- 批准号:
2303572 - 财政年份:2023
- 资助金额:
$ 3.13万 - 项目类别:
Standard Grant
Geometry and topology of surfaces and graphs
曲面和图形的几何和拓扑
- 批准号:
2304920 - 财政年份:2023
- 资助金额:
$ 3.13万 - 项目类别:
Standard Grant