Data-driven modeling of refinery reactors
炼油反应器的数据驱动建模
基本信息
- 批准号:533718-2018
- 负责人:
- 金额:$ 1.82万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Engage Grants Program
- 财政年份:2018
- 资助国家:加拿大
- 起止时间:2018-01-01 至 2019-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
A rapid development and increased popularity of data processing methods - from statistical analysis via machine leaning to computational intelligence and deep learning - have triggered an interest in utilizing new approaches to modeling processes. It is expected that applications of techniques of artificial intelligence in development of new generation of data driven models will lead to an enhanced utilization of models in design and validation of more efficient and optimal industrial control systems. Advanced data-oriented modelling methods will be able to address many issues related to systems' performance and their improvements.**For these reasons, the project focuses on development of methods and techniques for better understanding of factors influencing modeling of physical process units in refineries. It is important to utilize fast and accurate models of refineries in cases where currently used models require high performance computing, and are practically useless for quick predictability activities and processes of finding the best working configurations for given circumstances. Such knowledge is necessary to develop strategies and methodologies required by new methods of controlling and optimizing operations of refineries.**
数据处理方法的快速发展和日益普及-从统计分析到机器学习到计算智能和深度学习-引发了人们对利用新方法建模过程的兴趣。预计人工智能技术在开发新一代数据驱动模型中的应用将导致模型在设计和验证更有效和最佳工业控制系统中的利用率提高。先进的面向数据的建模方法将能够解决与系统性能及其改进有关的许多问题。由于这些原因,该项目的重点是开发方法和技术,以更好地了解影响炼油厂物理过程单元建模的因素。在当前使用的模型需要高性能计算的情况下,利用炼油厂的快速和准确的模型是重要的,并且对于快速预测活动和针对给定情况找到最佳工作配置的过程实际上是无用的。这种知识对于制定控制和优化炼油厂操作的新方法所需的战略和方法是必要的。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Reformat, Marek其他文献
Multilabel associative classification categorization of MEDLINE articles into MeSH keywords - An intelligent data mining technique to more accurately classify large volumes of documents
- DOI:
10.1109/memb.2007.335581 - 发表时间:
2007-03-01 - 期刊:
- 影响因子:0
- 作者:
Rak, Rafal;Kurgan, Lukasz A.;Reformat, Marek - 通讯作者:
Reformat, Marek
Automatic test data generation using genetic algorithm and program dependence graphs
- DOI:
10.1016/j.infsof.2005.06.006 - 发表时间:
2006-07-01 - 期刊:
- 影响因子:3.9
- 作者:
Miller, James;Reformat, Marek;Zhang, Howard - 通讯作者:
Zhang, Howard
Human intelligence-based metaverse for co-learning of students and smart machines.
- DOI:
10.1007/s12652-023-04580-2 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Lee, Chang-Shing;Wang, Mei-Hui;Reformat, Marek;Huang, Sheng-Hui - 通讯作者:
Huang, Sheng-Hui
Wind power forecasting using attention-based gated recurrent unit network
- DOI:
10.1016/j.energy.2020.117081 - 发表时间:
2020-04-01 - 期刊:
- 影响因子:9
- 作者:
Niu, Zhewen;Yu, Zeyuan;Reformat, Marek - 通讯作者:
Reformat, Marek
xGENIA: A comprehensive OWL ontology based on the GENIA corpus.
XGenia:基于Genia语料库的综合猫头鹰本体。
- DOI:
10.6026/97320630001360 - 发表时间:
2007-03-20 - 期刊:
- 影响因子:1.9
- 作者:
Rak, Rafal;Kurgan, Lukasz;Reformat, Marek - 通讯作者:
Reformat, Marek
Reformat, Marek的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Reformat, Marek', 18)}}的其他基金
Knowledge Extraction via Learning Processes and Data Models with Imprecision
通过不精确的学习过程和数据模型提取知识
- 批准号:
RGPIN-2017-06245 - 财政年份:2021
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Knowledge Extraction via Learning Processes and Data Models with Imprecision
通过不精确的学习过程和数据模型提取知识
- 批准号:
RGPIN-2017-06245 - 财政年份:2020
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Data-driven system for predicting outages and their severity
用于预测中断及其严重程度的数据驱动系统
- 批准号:
537808-2018 - 财政年份:2020
- 资助金额:
$ 1.82万 - 项目类别:
Collaborative Research and Development Grants
Data-driven system for predicting outages and their severity
用于预测中断及其严重程度的数据驱动系统
- 批准号:
537808-2018 - 财政年份:2019
- 资助金额:
$ 1.82万 - 项目类别:
Collaborative Research and Development Grants
Knowledge Extraction via Learning Processes and Data Models with Imprecision
通过不精确的学习过程和数据模型提取知识
- 批准号:
RGPIN-2017-06245 - 财政年份:2019
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Knowledge Extraction via Learning Processes and Data Models with Imprecision
通过不精确的学习过程和数据模型提取知识
- 批准号:
RGPIN-2017-06245 - 财政年份:2018
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Knowledge Extraction via Learning Processes and Data Models with Imprecision
通过不精确的学习过程和数据模型提取知识
- 批准号:
RGPIN-2017-06245 - 财政年份:2017
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Computational intelligence based analysis of power distribution data
基于计算智能的配电数据分析
- 批准号:
514064-2017 - 财政年份:2017
- 资助金额:
$ 1.82万 - 项目类别:
Engage Grants Program
Data-driven vehicle health management framework
数据驱动的车辆健康管理框架
- 批准号:
490536-2015 - 财政年份:2016
- 资助金额:
$ 1.82万 - 项目类别:
Collaborative Research and Development Grants
Modeling of Knowledge with Imprecision in Linked Data Environment
关联数据环境中不精确知识建模
- 批准号:
RGPIN-2015-06169 - 财政年份:2016
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
Data-driven Recommendation System Construction of an Online Medical Platform Based on the Fusion of Information
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国青年学者研究基金项目
基于Cache的远程计时攻击研究
- 批准号:60772082
- 批准年份:2007
- 资助金额:28.0 万元
- 项目类别:面上项目
相似海外基金
A data-driven modeling approach for augmenting climate model simulations and its application to Pacific-Atlantic interbasin interactions
增强气候模型模拟的数据驱动建模方法及其在太平洋-大西洋跨流域相互作用中的应用
- 批准号:
23K25946 - 财政年份:2024
- 资助金额:
$ 1.82万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
ERI: Data-Driven Analysis and Dynamic Modeling of Residential Power Demand Behavior: Using Long-Term Real-World Data from Rural Electric Systems
ERI:住宅电力需求行为的数据驱动分析和动态建模:使用农村电力系统的长期真实数据
- 批准号:
2301411 - 财政年份:2024
- 资助金额:
$ 1.82万 - 项目类别:
Standard Grant
Collaborative Research: Sea-state-dependent drag parameterization through experiments and data-driven modeling
合作研究:通过实验和数据驱动建模进行与海况相关的阻力参数化
- 批准号:
2404369 - 财政年份:2024
- 资助金额:
$ 1.82万 - 项目类别:
Standard Grant
Collaborative Research: Sea-state-dependent drag parameterization through experiments and data-driven modeling
合作研究:通过实验和数据驱动建模进行与海况相关的阻力参数化
- 批准号:
2404368 - 财政年份:2024
- 资助金额:
$ 1.82万 - 项目类别:
Standard Grant
IHBEM: Empirical analysis of a data-driven multiscale metapopulation mobility network modeling infection dynamics and mobility responses in rural States
IHBEM:对数据驱动的多尺度集合人口流动网络进行实证分析,对农村国家的感染动态和流动反应进行建模
- 批准号:
2327862 - 财政年份:2023
- 资助金额:
$ 1.82万 - 项目类别:
Continuing Grant
A data-driven modeling approach for augmenting climate model simulations and its application to Pacific-Atlantic interbasin interactions
增强气候模型模拟的数据驱动建模方法及其在太平洋-大西洋跨流域相互作用中的应用
- 批准号:
23H01250 - 财政年份:2023
- 资助金额:
$ 1.82万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Collaborative Research: CPS: Medium: Data Driven Modeling and Analysis of Energy Conversion Systems -- Manifold Learning and Approximation
合作研究:CPS:媒介:能量转换系统的数据驱动建模和分析——流形学习和逼近
- 批准号:
2223987 - 财政年份:2023
- 资助金额:
$ 1.82万 - 项目类别:
Standard Grant
Accurate and Individualized Prediction of Excitation-Inhibition Imbalance in Alzheimer's Disease using Data-driven Neural Model
使用数据驱动的神经模型准确、个性化地预测阿尔茨海默病的兴奋抑制失衡
- 批准号:
10727356 - 财政年份:2023
- 资助金额:
$ 1.82万 - 项目类别:
Dissociating respiratory depression and analgesia via a data-driven model of interacting respiratory and pain networks
通过呼吸和疼痛网络相互作用的数据驱动模型分离呼吸抑制和镇痛
- 批准号:
10644300 - 财政年份:2023
- 资助金额:
$ 1.82万 - 项目类别:
Data-driven and science-informed methods for the discovery of biomedical mechanisms and processes
用于发现生物医学机制和过程的数据驱动和科学信息方法
- 批准号:
10624014 - 财政年份:2023
- 资助金额:
$ 1.82万 - 项目类别:














{{item.name}}会员




