Smart vision-based monitoring system for heavy construction and surface mining jobsites

适用于重型建筑和露天采矿作业现场的智能视觉监控系统

基本信息

  • 批准号:
    RGPIN-2015-03812
  • 负责人:
  • 金额:
    $ 1.68万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2018
  • 资助国家:
    加拿大
  • 起止时间:
    2018-01-01 至 2019-12-31
  • 项目状态:
    已结题

项目摘要

Construction operations, like other industrial and service processes, require real-time feedback systems to measure key performance indicators, such as productivity, and to take steps to correct problems that interfere with efficient operations. Currently, automated systems are broadly used in many industries and services and have improved productivity substantially. However, the construction industry has been slow to adopt automation. To develop effective automated feedback systems, researchers have tested different sensing technologies to monitor workers and equipment in the uniquely rugged environment of construction jobsites. Earthmoving projects, such as highway construction and surface mining operations, have been a primary initial focus in the industry for developing automated sensing systems. However, monitoring different types of equipment in a dynamic environment is a challenge; systems are challenged to understand the context of a construction site. For example, hydraulic excavators can take any number of shapes, which strains the ability of software to classify the actions of the equipment. Low-cost digital cameras, combined with promising advances in computer vision, make vision-based systems likely candidates for solutions in construction operations. The current systems using vision-based algorithms to monitor heavy operations, however, aren't ideal and require some level of human intervention to operate successfully. For instance, they are not able to understand the scene and the user must determine the action type to be monitored; also, the user has to set the viewfinder of the camera on the operation of interest. The objective of this research program is to bridge the gap between theoretical computer vision and machine learning algorithms on one hand, and practical applications on the other, to develop a generic smart vision-based system to measure the productivity of earthmoving processes in construction and surface mining jobsites. Beyond object recognition and tracking, the proposed research program will investigate development of algorithms for action recognition and understanding the scene based on identified actions, automated control of panning and zooming features of a camera, proactive control of a network of cameras (including the ability to transfer tracking among cameras in the network), productivity estimation, deviation detection, and integration of developed modules. The final result will be an automated framework capable of tracking different kinds of machinery in different types of construction environments. ***This research plan could potentially transform earthmoving monitoring, making it an automated knowledge-based practice and leading to productivity increases, cost savings, improvement in the competitiveness of Canadian mining and heavy civil sectors, and reduction of greenhouse gas emissions of these operations. **
与其他工业和服务流程一样,建筑运营需要实时反馈系统来衡量关键绩效指标,如生产率,并采取措施纠正干扰高效运营的问题。目前,自动化系统广泛应用于许多行业和服务,并大大提高了生产力。然而,建筑业在采用自动化方面进展缓慢。为了开发有效的自动反馈系统,研究人员测试了不同的传感技术,以监测建筑工地独特的恶劣环境中的工人和设备。土方工程,如公路建设和露天采矿作业,一直是该行业开发自动传感系统的主要初始焦点。然而,在动态环境中监控不同类型的设备是一项挑战;系统面临着理解施工现场环境的挑战。例如,液压挖掘机可以采用任何数量的形状,这会使软件对设备动作进行分类的能力受到限制。低成本的数码相机,加上计算机视觉的进步,使基于视觉的系统成为建筑运营解决方案的可能候选者。然而,目前使用基于视觉的算法来监控繁重操作的系统并不理想,需要一定程度的人为干预才能成功操作。例如,他们不能理解场景,用户必须确定要监视的动作类型;此外,用户必须将相机的取景器设置在感兴趣的操作上。本研究项目的目标是一方面弥合理论计算机视觉和机器学习算法与实际应用之间的差距,开发一个通用的基于智能视觉的系统来测量建筑和露天采矿作业现场土方工程的生产率。除了对象识别和跟踪之外,拟议的研究计划将研究基于已识别的动作的动作识别和理解场景的算法的开发,摄像机的平移和缩放功能的自动控制,摄像机网络的主动控制(包括在网络中的摄像机之间转移跟踪的能力),生产力估计,偏差检测以及开发模块的集成。最终的结果将是一个自动化框架,能够在不同类型的施工环境中跟踪不同类型的机械。* 这项研究计划可能会改变土方监测,使其成为一种基于知识的自动化实践,从而提高生产力,节省成本,提高加拿大采矿和重型民用部门的竞争力,并减少这些业务的温室气体排放。**

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

RezazadehAzar, Ehsan其他文献

RezazadehAzar, Ehsan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('RezazadehAzar, Ehsan', 18)}}的其他基金

Automated data collection and machine learning methods for civil infrastructure condition assessment in sparsely inhabited regions of Canada
用于加拿大人烟稀少地区民用基础设施状况评估的自动数据收集和机器学习方法
  • 批准号:
    RGPIN-2021-03916
  • 财政年份:
    2022
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual
Automated data collection and machine learning methods for civil infrastructure condition assessment in sparsely inhabited regions of Canada
用于加拿大人烟稀少地区民用基础设施状况评估的自动数据收集和机器学习方法
  • 批准号:
    RGPIN-2021-03916
  • 财政年份:
    2021
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual
Smart vision-based monitoring system for heavy construction and surface mining jobsites
适用于重型建筑和露天采矿作业现场的智能视觉监控系统
  • 批准号:
    RGPIN-2015-03812
  • 财政年份:
    2020
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual
Computer vision-based condition assessment of the public transit infrastructure assets
基于计算机视觉的公共交通基础设施资产状况评估
  • 批准号:
    561003-2020
  • 财政年份:
    2020
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Alliance Grants
Smart vision-based monitoring system for heavy construction and surface mining jobsites
适用于重型建筑和露天采矿作业现场的智能视觉监控系统
  • 批准号:
    RGPIN-2015-03812
  • 财政年份:
    2019
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual
Smart vision-based monitoring system for heavy construction and surface mining jobsites
适用于重型建筑和露天采矿作业现场的智能视觉监控系统
  • 批准号:
    RGPIN-2015-03812
  • 财政年份:
    2017
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual
Smart vision-based monitoring system for heavy construction and surface mining jobsites
适用于重型建筑和露天采矿作业现场的智能视觉监控系统
  • 批准号:
    RGPIN-2015-03812
  • 财政年份:
    2016
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual
Improving productivity of material cutting and movement in steel fabrication plants
提高钢铁制造厂材料切割和移动的生产率
  • 批准号:
    507596-2016
  • 财政年份:
    2016
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Engage Grants Program
Smart vision-based monitoring system for heavy construction and surface mining jobsites
适用于重型建筑和露天采矿作业现场的智能视觉监控系统
  • 批准号:
    RGPIN-2015-03812
  • 财政年份:
    2015
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

基于SOPC的VisionTransformer模型AI推理系统实现研究
  • 批准号:
    2023JJ60221
  • 批准年份:
    2023
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
老年人群视障风险VISION管控模式构建与实证研究
  • 批准号:
    71974198
  • 批准年份:
    2019
  • 资助金额:
    48.5 万元
  • 项目类别:
    面上项目

相似海外基金

Simulation based surgical training for high risk low resourced procedures using a novel simulator with smart mentoring
使用带有智能指导的新型模拟器,针对高风险、低资源手术进行基于模拟的手术培训
  • 批准号:
    10644160
  • 财政年份:
    2022
  • 资助金额:
    $ 1.68万
  • 项目类别:
Using Smart Displays to Implement an Evidence-Based eHealth System for Older Adults with Multiple Chronic Conditions
使用智能显示器为患有多种慢性病的老年人实施循证电子医疗系统
  • 批准号:
    10467353
  • 财政年份:
    2021
  • 资助金额:
    $ 1.68万
  • 项目类别:
Using Smart Displays to Implement an Evidence-Based eHealth System for Older Adults with Multiple Chronic Conditions
使用智能显示器为患有多种慢性病的老年人实施循证电子医疗系统
  • 批准号:
    10673770
  • 财政年份:
    2021
  • 资助金额:
    $ 1.68万
  • 项目类别:
Computer Vision and IoT for Personalised Site Monitoring Analytics in Real-Time (CV-SMART) towards Behaviour-Based Safety
用于实时个性化现场监控分析 (CV-SMART) 的计算机视觉和物联网,以实现基于行为的安全
  • 批准号:
    106298
  • 财政年份:
    2020
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Study
Smart vision-based monitoring system for heavy construction and surface mining jobsites
适用于重型建筑和露天采矿作业现场的智能视觉监控系统
  • 批准号:
    RGPIN-2015-03812
  • 财政年份:
    2020
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual
Enhancing rural business efficiency and growth by minimising harvester induced damage to root crops through development of a vision-based smart system to detect damage in real-time and adjust machine parameters - CropVision
通过开发基于视觉的智能系统来实时检测损坏并调整机器参数,最大限度地减少收割机对块根作物造成的损坏,从而提高农村商业效率和增长 - CropVision
  • 批准号:
    78866
  • 财政年份:
    2020
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Small Business Research Initiative
Smart vision-based monitoring system for heavy construction and surface mining jobsites
适用于重型建筑和露天采矿作业现场的智能视觉监控系统
  • 批准号:
    RGPIN-2015-03812
  • 财政年份:
    2019
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual
Smart vision-based monitoring system for heavy construction and surface mining jobsites
适用于重型建筑和露天采矿作业现场的智能视觉监控系统
  • 批准号:
    RGPIN-2015-03812
  • 财政年份:
    2017
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual
Nanotechnology-Based Environmental Smart Sensors for Personal Health Exposure Monitoring
基于纳米技术的环境智能传感器,用于个人健康暴露监测
  • 批准号:
    9047822
  • 财政年份:
    2016
  • 资助金额:
    $ 1.68万
  • 项目类别:
Nanotechnology-Based Environmental Smart Sensors for Personal Health Exposure Monitoring
基于纳米技术的环境智能传感器,用于个人健康暴露监测
  • 批准号:
    9284876
  • 财政年份:
    2016
  • 资助金额:
    $ 1.68万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了