Computer vision-based condition assessment of the public transit infrastructure assets

基于计算机视觉的公共交通基础设施资产状况评估

基本信息

  • 批准号:
    561003-2020
  • 负责人:
  • 金额:
    $ 2.19万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Alliance Grants
  • 财政年份:
    2020
  • 资助国家:
    加拿大
  • 起止时间:
    2020-01-01 至 2021-12-31
  • 项目状态:
    已结题

项目摘要

Public transit systems are essential to the social and economical prosperity of Canada, and contribute to the advancement of social equity and environmental objectives. Efficient and effective infrastructure asset management is vital to providing a reliable public transit system, but current infrastructure asset management practices mainly rely on conventional data gathering methods which require manual site visits that are labour-intensive and time-consuming. Effective asset management could be more challenging for small and medium-sized cities due to unsteady and limited public revenues. Since transit agencies have difficulties in maintaining and updating their large datasets using their limited human resources, many research efforts have focused on development of semi-automated infrastructure condition assessment methods, such as crowdsourcing by the online community, image and video processing, aerial photography, and vehicle-based LiDAR. The proposed research project will develop an innovative computer vision-based system to improve data collection and condition assessment processes for public transit infrastructure asset management. The proposed system will use the regular operation of the transit buses for data collection and then utilizes deep learning methods to detect public transit infrastructure assets, asses their condition, and update asset management inventories. The industry partners in this research project are Thunder Bay Transit and Consat Telematics. Thunder Bay Transit provides general public transit services in Thunder Bay area and aims to incorporate the findings of this research to enhance management of their infrastructure assets. Consat Telematics is a technology company which develops intelligent transportation systems and the developed system will be integrated into their fleet management systems.
公共交通系统对于加拿大的社会和经济繁荣至关重要,并有助于促进社会公平和环境目标。高效且有效的基础设施资产管理对于提供可靠的公共交通系统至关重要,但当前的基础设施资产管理实践主要依赖于传统的数据收集方法,需要人工现场访问,既费力又耗时。由于公共收入不稳定且有限,有效的资产管理对于中小城市来说可能更具挑战性。由于交通机构难以利用有限的人力资源来维护和更新大型数据集,因此许多研究工作都集中在半自动化基础设施状况评估方法的开发上,例如在线社区众包、图像和视频处理、航空摄影和车载激光雷达。拟议的研究项目将开发一种基于计算机视觉的创新系统,以改进公共交通基础设施资产管理的数据收集和状况评估流程。拟议的系统将利用公交巴士的常规运营来收集数据,然后利用深度学习方法来检测公共交通基础设施资产,评估其状况并更新资产管理库存。该研究项目的行业合作伙伴是 Thunder Bay Transit 和 Consat Telematics。 Thunder Bay Transit 在 Thunder Bay 地区提供一般公共交通服务,旨在将这项研究的结果纳入其中,以加强其基础设施资产的管理。 Consat Telematics是一家开发智能交通系统的科技公司,开发的系统将集成到其车队管理系统中。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

RezazadehAzar, Ehsan其他文献

RezazadehAzar, Ehsan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('RezazadehAzar, Ehsan', 18)}}的其他基金

Automated data collection and machine learning methods for civil infrastructure condition assessment in sparsely inhabited regions of Canada
用于加拿大人烟稀少地区民用基础设施状况评估的自动数据收集和机器学习方法
  • 批准号:
    RGPIN-2021-03916
  • 财政年份:
    2022
  • 资助金额:
    $ 2.19万
  • 项目类别:
    Discovery Grants Program - Individual
Automated data collection and machine learning methods for civil infrastructure condition assessment in sparsely inhabited regions of Canada
用于加拿大人烟稀少地区民用基础设施状况评估的自动数据收集和机器学习方法
  • 批准号:
    RGPIN-2021-03916
  • 财政年份:
    2021
  • 资助金额:
    $ 2.19万
  • 项目类别:
    Discovery Grants Program - Individual
Smart vision-based monitoring system for heavy construction and surface mining jobsites
适用于重型建筑和露天采矿作业现场的智能视觉监控系统
  • 批准号:
    RGPIN-2015-03812
  • 财政年份:
    2020
  • 资助金额:
    $ 2.19万
  • 项目类别:
    Discovery Grants Program - Individual
Smart vision-based monitoring system for heavy construction and surface mining jobsites
适用于重型建筑和露天采矿作业现场的智能视觉监控系统
  • 批准号:
    RGPIN-2015-03812
  • 财政年份:
    2019
  • 资助金额:
    $ 2.19万
  • 项目类别:
    Discovery Grants Program - Individual
Smart vision-based monitoring system for heavy construction and surface mining jobsites
适用于重型建筑和露天采矿作业现场的智能视觉监控系统
  • 批准号:
    RGPIN-2015-03812
  • 财政年份:
    2018
  • 资助金额:
    $ 2.19万
  • 项目类别:
    Discovery Grants Program - Individual
Smart vision-based monitoring system for heavy construction and surface mining jobsites
适用于重型建筑和露天采矿作业现场的智能视觉监控系统
  • 批准号:
    RGPIN-2015-03812
  • 财政年份:
    2017
  • 资助金额:
    $ 2.19万
  • 项目类别:
    Discovery Grants Program - Individual
Improving productivity of material cutting and movement in steel fabrication plants
提高钢铁制造厂材料切割和移动的生产率
  • 批准号:
    507596-2016
  • 财政年份:
    2016
  • 资助金额:
    $ 2.19万
  • 项目类别:
    Engage Grants Program
Smart vision-based monitoring system for heavy construction and surface mining jobsites
适用于重型建筑和露天采矿作业现场的智能视觉监控系统
  • 批准号:
    RGPIN-2015-03812
  • 财政年份:
    2016
  • 资助金额:
    $ 2.19万
  • 项目类别:
    Discovery Grants Program - Individual
Smart vision-based monitoring system for heavy construction and surface mining jobsites
适用于重型建筑和露天采矿作业现场的智能视觉监控系统
  • 批准号:
    RGPIN-2015-03812
  • 财政年份:
    2015
  • 资助金额:
    $ 2.19万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

基于SOPC的VisionTransformer模型AI推理系统实现研究
  • 批准号:
    2023JJ60221
  • 批准年份:
    2023
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
老年人群视障风险VISION管控模式构建与实证研究
  • 批准号:
    71974198
  • 批准年份:
    2019
  • 资助金额:
    48.5 万元
  • 项目类别:
    面上项目

相似海外基金

CAREER: Reinventing Computer Vision through Bio-inspired Retinomorphic Vision Sensors, Corticomorphic Compute-In-Memory Processors and Event-based Algorithms
职业:通过仿生视网膜形态视觉传感器、皮质形态内存计算处理器和基于事件的算法重塑计算机视觉
  • 批准号:
    2338171
  • 财政年份:
    2024
  • 资助金额:
    $ 2.19万
  • 项目类别:
    Continuing Grant
Data assimilation performance analysis of existing bridges by multi-level computer vision-based measurement
基于多级计算机视觉测量的现有桥梁数据同化性能分析
  • 批准号:
    23H01487
  • 财政年份:
    2023
  • 资助金额:
    $ 2.19万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Assessment of a Radiomics-Based Computer-Aided Diagnosis Tool for Cancer Risk Stratification of Pulmonary Nodules
基于放射组学的计算机辅助诊断工具对肺结节癌症风险分层的评估
  • 批准号:
    10644765
  • 财政年份:
    2023
  • 资助金额:
    $ 2.19万
  • 项目类别:
Computer Vision for Malaria Microscopy: Automated Detection and Classification of Plasmodium for Basic Science and Pre-Clinical Applications
用于疟疾显微镜的计算机视觉:用于基础科学和临床前应用的疟原虫自动检测和分类
  • 批准号:
    10576701
  • 财政年份:
    2023
  • 资助金额:
    $ 2.19万
  • 项目类别:
Developing an Innovative Platform for Modeling Active Road User Interactions and Safety: Integration of Computer Vision, Agent-based, and Machine Learning Models
开发用于对主动道路用户交互和安全进行建模的创新平台:计算机视觉、基于代理和机器学习模型的集成
  • 批准号:
    RGPIN-2019-06688
  • 财政年份:
    2022
  • 资助金额:
    $ 2.19万
  • 项目类别:
    Discovery Grants Program - Individual
Development of the Real-time Lifting Assessment tool based on Computer Vision
基于计算机视觉的实时举升评估工具开发
  • 批准号:
    576741-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 2.19万
  • 项目类别:
    Alliance Grants
I-Corps: Computer Vision-Based Intelligent Service Recommendation System
I-Corps:基于计算机视觉的智能服务推荐系统
  • 批准号:
    2223872
  • 财政年份:
    2022
  • 资助金额:
    $ 2.19万
  • 项目类别:
    Standard Grant
Plastic packaging, a complete recognition and monitoring system based on AI and fusing RGB-based computer vision with Near Infrared spectral Imaging (NIR SI)
塑料包装,基于人工智能并将基于 RGB 的计算机视觉与近红外光谱成像 (NIR SI) 融合的完整识别和监控系统
  • 批准号:
    10020954
  • 财政年份:
    2022
  • 资助金额:
    $ 2.19万
  • 项目类别:
    Collaborative R&D
Computer Vision-Based Deep Learning Algorithms for Detecting Marine Life and Physical Phenomena from Acoustic Backscatter Time Series
基于计算机视觉的深度学习算法,用于从声学反向散射时间序列中检测海洋生物和物理现象
  • 批准号:
    576751-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 2.19万
  • 项目类别:
    Alliance Grants
New unsupervised Bayesian and energy-based models dedicated to image processing and computer vision applications
新的无监督贝叶斯和基于能量的模型致力于图像处理和计算机视觉应用
  • 批准号:
    RGPIN-2022-03654
  • 财政年份:
    2022
  • 资助金额:
    $ 2.19万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了