Active Intrusion Prediction and Response for Computing Devices on the Internet

互联网上计算设备的主动入侵预测和响应

基本信息

  • 批准号:
    RGPIN-2017-04755
  • 负责人:
  • 金额:
    $ 1.75万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2018
  • 资助国家:
    加拿大
  • 起止时间:
    2018-01-01 至 2019-12-31
  • 项目状态:
    已结题

项目摘要

Computing infrastructure in Canada as well as across the world are increasingly under attack from intruders attempting to steal information that is safety, business and privacy critical. Such intruders are often backed by criminal enterprises or nation-state actors and are technically very sophisticated with plenty of resources. In 2015, British insurance company Lloyd's estimated the world-wide loss due to cyber crime USD $500 billion. By 2019, this is expected to quadruple to $2 trillion. A crucial weapon in the fight against this worsening crisis is an engineering solution to detect network intrusions and deploy countermeasures. ***Current intrusion detection systems work by monitoring network activity and looking for activity patterns that match known attack steps. Often, this results in detection after the attack has taken place and response is limited to recovery operations instead of thwarting an ongoing attack. This proposal aims to develop innovative solutions for intrusion detection and response that far surpass the state-of-the-art in following ways: a) generate many possible attack scenarios when an initial stage of an intrusion is detected, b) deploy additional monitoring tools that are specifically designed to gather evidence to confirm or deny these attack scenarios, c) plan defensive measures that can effectively counter the most likely scenarios and d) deploy these defensive measures in a way that is is least disruptive while continually evaluating the situation as above. Long term vision is to develop intelligent intrusion response systems that are aware of the security situation within the next decade.***The short term objectives in this proposal that are designed to achieve the above goals include developing a novel way to represent intrusion events that can capture high-level intent as well as low-level network activity, recognizing combinations of intrusion events that are part of a larger attack and deploying these tools within a framework that allows building situational awareness. In the long term, this proposal aims to develop algorithms that can predict impending penetrations based on identification of ongoing attacks and develop countermeasures that can thwart these predicted attacks. A highlight of the proposed research is the development of algorithms that can learn from past attacks as well as setup decoy targets and dynamically change the network paths to divert attacks away from critical systems. The latter will also allow gathering crucial data about these attacks that will be used to design better detection tools in the future.***Information security is becoming a critical need for the foreseeable future and innovative approaches as well as highly trained professionals are needed to meet the looming challenges. This program will train the engineers with necessary background as well as with hands-on experience, who will be able to fill this critical and growing need.
加拿大以及世界各地的计算基础设施正越来越多地受到入侵者的攻击,这些入侵者试图窃取安全、商业和隐私关键信息。这些入侵者通常得到犯罪企业或民族国家行为者的支持,在技术上非常复杂,拥有大量资源。2015年,英国保险公司劳合社估计,全球因网络犯罪造成的损失达5000亿美元。到2019年,这一数字预计将翻两番,达到2万亿美元。对抗这一日益恶化的危机的关键武器是检测网络入侵并部署对策的工程解决方案。当前的入侵检测系统通过监控网络活动和寻找与已知攻击步骤相匹配的活动模式来工作。通常,这导致在攻击发生后才进行检测,并且响应仅限于恢复操作,而不是阻止正在进行的攻击。本建议旨在发展创新的入侵检测和响应方案,在以下方面远远超过最新的技术水平:A)在检测到入侵的初始阶段时生成许多可能的攻击场景;b)部署额外的监控工具,专门用于收集证据以确认或否认这些攻击场景;c)计划可以有效应对最可能出现的场景的防御措施;d)在持续评估上述情况的同时,以破坏性最小的方式部署这些防御措施。长期目标是在未来十年内开发出能够感知安全形势的智能入侵响应系统。***本提案旨在实现上述目标的短期目标包括开发一种新颖的方式来表示入侵事件,这种方式可以捕获高级意图和低级网络活动,识别作为更大攻击一部分的入侵事件的组合,并在允许建立态势感知的框架内部署这些工具。从长远来看,该提案旨在开发能够基于识别正在进行的攻击来预测即将发生的渗透的算法,并制定能够阻止这些预测攻击的对策。提出的研究的一个重点是算法的发展,可以从过去的攻击中学习,以及设置诱饵目标和动态改变网络路径,以转移攻击远离关键系统。后者还将允许收集有关这些攻击的关键数据,这些数据将用于未来设计更好的检测工具。***在可预见的未来,资讯保安正成为一项重要的需求,需要创新的方法以及训练有素的专业人员来迎接即将来临的挑战。该计划将培养具有必要背景和实践经验的工程师,他们将能够填补这一关键和不断增长的需求。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Samarabandu, Jagath其他文献

Vibration-based multiclass damage detection and localization using long short-term memory networks
  • DOI:
    10.1016/j.istruc.2021.10.088
  • 发表时间:
    2021-11-19
  • 期刊:
  • 影响因子:
    4.1
  • 作者:
    Sony, Sandeep;Gamage, Sunanda;Samarabandu, Jagath
  • 通讯作者:
    Samarabandu, Jagath
Deep learning methods in network intrusion detection: A survey and an objective comparison

Samarabandu, Jagath的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Samarabandu, Jagath', 18)}}的其他基金

Active Intrusion Prediction and Response for Computing Devices on the Internet
互联网上计算设备的主动入侵预测和响应
  • 批准号:
    RGPIN-2017-04755
  • 财政年份:
    2021
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Grants Program - Individual
Active Intrusion Prediction and Response for Computing Devices on the Internet
互联网上计算设备的主动入侵预测和响应
  • 批准号:
    RGPIN-2017-04755
  • 财政年份:
    2020
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Grants Program - Individual
Active Intrusion Prediction and Response for Computing Devices on the Internet
互联网上计算设备的主动入侵预测和响应
  • 批准号:
    RGPIN-2017-04755
  • 财政年份:
    2019
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Grants Program - Individual
Active Intrusion Prediction and Response for Computing Devices on the Internet
互联网上计算设备的主动入侵预测和响应
  • 批准号:
    RGPIN-2017-04755
  • 财政年份:
    2017
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Grants Program - Individual
"Intelligent monitoring for elderly and the disabled using vision , depth, motion and audio sensors"
“使用视觉、深度、运动和音频传感器对老年人和残疾人进行智能监控”
  • 批准号:
    239004-2012
  • 财政年份:
    2016
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Grants Program - Individual
"Intelligent monitoring for elderly and the disabled using vision , depth, motion and audio sensors"
“使用视觉、深度、运动和音频传感器对老年人和残疾人进行智能监控”
  • 批准号:
    239004-2012
  • 财政年份:
    2015
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Grants Program - Individual
"Intelligent monitoring for elderly and the disabled using vision , depth, motion and audio sensors"
“使用视觉、深度、运动和音频传感器对老年人和残疾人进行智能监控”
  • 批准号:
    239004-2012
  • 财政年份:
    2014
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Grants Program - Individual
"Intelligent monitoring for elderly and the disabled using vision , depth, motion and audio sensors"
“使用视觉、深度、运动和音频传感器对老年人和残疾人进行智能监控”
  • 批准号:
    239004-2012
  • 财政年份:
    2013
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Grants Program - Individual
"Intelligent monitoring for elderly and the disabled using vision , depth, motion and audio sensors"
“使用视觉、深度、运动和音频传感器对老年人和残疾人进行智能监控”
  • 批准号:
    239004-2012
  • 财政年份:
    2012
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Grants Program - Individual
Software defined radio prototype development
软件定义无线电原型开发
  • 批准号:
    429898-2012
  • 财政年份:
    2012
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Engage Grants Program

相似海外基金

Collaborative Research: Drivers and Biogeochemical Implications of Saltwater Intrusion Along Arctic Coastlines
合作研究:北极海岸线盐水入侵的驱动因素和生物地球化学影响
  • 批准号:
    2316041
  • 财政年份:
    2024
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Standard Grant
Collaborative Research: Drivers and Biogeochemical Implications of Saltwater Intrusion Along Arctic Coastlines
合作研究:北极海岸线盐水入侵的驱动因素和生物地球化学影响
  • 批准号:
    2316040
  • 财政年份:
    2024
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Standard Grant
Collaborative Research: Drivers and Biogeochemical Implications of Saltwater Intrusion Along Arctic Coastlines
合作研究:北极海岸线盐水入侵的驱动因素和生物地球化学影响
  • 批准号:
    2316039
  • 财政年份:
    2024
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Standard Grant
CRII: SaTC: Robust Explainable Provenance-based Intrusion Detection
CRII:SaTC:鲁棒、可解释、基于来源的入侵检测
  • 批准号:
    2245442
  • 财政年份:
    2023
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Standard Grant
Explainable and Robust AI-powered Intrusion Detection Management
可解释且强大的人工智能驱动的入侵检测管理
  • 批准号:
    10074348
  • 财政年份:
    2023
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Grant for R&D
Mechanical Intelligence of Locomotion and Intrusion in Slender Organisms in Terradynamically Rich Terrain
地动力丰富地形中细长生物体运动和入侵的机械智能
  • 批准号:
    2310751
  • 财政年份:
    2023
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Standard Grant
Collaborative Research: Constraining transient magma intrusion processes in the Nyiragongo-Kivu continental rift zone
合作研究:限制尼拉贡戈-基伍大陆裂谷带的瞬时岩浆侵入过程
  • 批准号:
    2151005
  • 财政年份:
    2022
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Continuing Grant
A formal approach to intrusion detection
入侵检测的正式方法
  • 批准号:
    RGPIN-2019-05327
  • 财政年份:
    2022
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Grants Program - Individual
Integrated IoT Sensing and Edge Computing Coupled with a Bayesian Network Model for Exposure Assessment and Targeted Remediation of Vapor Intrusion
集成物联网传感和边缘计算与贝叶斯网络模型相结合,用于暴露评估和蒸汽入侵的针对性修复
  • 批准号:
    10700801
  • 财政年份:
    2022
  • 资助金额:
    $ 1.75万
  • 项目类别:
Intrusion-related critical metal deposits throughout the Appalachian orogen: constraining melt fertility and the magmatic-hydrothermal transition
整个阿巴拉契亚造山带与侵入相关的关键金属矿床:限制熔体肥力和岩浆-热液转变
  • 批准号:
    RGPIN-2022-05224
  • 财政年份:
    2022
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了