Feature-based methods for 3D medical image analysis

基于特征的 3D 医学图像分析方法

基本信息

  • 批准号:
    RGPIN-2016-04407
  • 负责人:
  • 金额:
    $ 1.97万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2018
  • 资助国家:
    加拿大
  • 起止时间:
    2018-01-01 至 2019-12-31
  • 项目状态:
    已结题

项目摘要

Medical imaging modalities such as MRI, ultrasound and CT allow us to visualize the 3D human body in-vivo, to make quantitative statements regarding anatomy or to diagnose pathologies or disorders. Collections of medical image data are growing rapidly in size and offer unprecedented opportunities for large-scale analyses to quantify anatomical variability and understand disease processes, for example Alzheimer's disease in brain MRI or chronic obstructive pulmonary disease (COPD) in lung CT images. Given pressures on health care systems, an urgent need exists for robust, scalable computational tools capable of analyzing large quantities of diverse medical image data.***The long term goal of my research is to develop state-of-the-art algorithms for analyzing volumetric medical image data, in particular large sets of medical images. The short term goals will target primary computational tasks and clinical applications. The results will include computational tools for large-scale computer-assisted analysis and diagnosis of medical image data, which will help medical health practitioners provided more accurate, evidence-based decisions. ***Medical image analysis focuses on computational algorithms for addressing clinical research questions pertaining the structure and function of biological organisms from image data. Major research challenges stem from robustly coping with variations in image appearance and geometry, potentially due to abnormalities such as pathology or injury, scaling to large numbers of data in terms of efficiency in computational processing. Primary computational tasks include the following:*** * Registration: aligning different images of the same underlying object or tissue.*** * Segmentation: delineating tissues or objects of interest.*** * Classification and Regression: predicting unknown clinical parameters of interest from image data, such as disease state.*** * Discovery: identifying image structure correlated with parameters of interest.***My research develops a general computational framework for medical image analysis, entitled feature-based analysis (FBA). FBA models medical image data as a collage of generic image patches or features, such as blob- or corner-like structures, that are automatically extracted in a manner invariant to global variations in image geometry (e.g. due to patient positioning in the scanner) and appearance (e.g. due to imaging modality, noise). FBA algorithms based on local invariant feature data are thus highly robust to nuisance variations in image data acquired from different sites, scanners and subjects. Furthermore, efficient feature indexing/matching algorithms (e.g. approximate nearest neighbor methods) serve as the basis for machine learning methods that scale to arbitrarily large image datasets, opening the door to “Big Data” style medical image analysis that improves as the number of training examples increases.*** *** **
医学成像方式,如MRI、超声和CT,使我们能够在体内可视化3D人体,对解剖学或诊断病理或疾病做出定量陈述。医学图像数据集的规模正在迅速增长,为大规模分析提供了前所未有的机会,以量化解剖变异和了解疾病过程,例如脑MRI中的阿尔茨海默病或肺部CT图像中的慢性阻塞性肺疾病(COPD)。鉴于卫生保健系统面临的压力,迫切需要能够分析大量不同医学图像数据的强大、可扩展的计算工具。***我研究的长期目标是开发最先进的算法来分析体积医学图像数据,特别是大型医学图像集。短期目标将针对主要的计算任务和临床应用。结果将包括用于大规模计算机辅助分析和诊断医学图像数据的计算工具,这将帮助医疗保健从业者提供更准确的、基于证据的决策。***医学图像分析侧重于从图像数据中解决有关生物有机体结构和功能的临床研究问题的计算算法。主要的研究挑战来自于如何处理图像外观和几何形状的变化,这些变化可能是由于病理或损伤等异常引起的,以及在计算处理效率方面扩展到大量数据。主要的计算任务包括以下内容:*** *配准:对齐相同底层对象或组织的不同图像。*** *分割:描绘感兴趣的组织或对象。*** *分类和回归:从图像数据中预测未知的临床参数,如疾病状态。*** *发现:识别与感兴趣的参数相关的图像结构。我的研究开发了一个用于医学图像分析的通用计算框架,称为基于特征的分析(FBA)。FBA将医学图像数据建模为通用图像补丁或特征的拼贴,例如斑点状或角状结构,这些图像以一种不受图像几何形状(例如,由于患者在扫描仪中的位置)和外观(例如,由于成像模式、噪声)全局变化的方式自动提取。因此,基于局部不变特征数据的FBA算法对来自不同地点、扫描仪和受试者的图像数据的讨厌变化具有高度的鲁棒性。此外,高效的特征索引/匹配算法(例如,近似最近邻方法)是扩展到任意大型图像数据集的机器学习方法的基础,打开了“大数据”风格的医学图像分析的大门,随着训练样本数量的增加而改进。*** *** **

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Toews, Matthew其他文献

Feature-based morphometry: discovering group-related anatomical patterns.
  • DOI:
    10.1016/j.neuroimage.2009.10.032
  • 发表时间:
    2010-02-01
  • 期刊:
  • 影响因子:
    5.7
  • 作者:
    Toews, Matthew;Wells, William, III;Collins, D. Louis;Arbel, Tal
  • 通讯作者:
    Arbel, Tal
Deformable MRI-Ultrasound registration using correlation-based attribute matching for brain shift correction: Accuracy and generality in multi-site data
  • DOI:
    10.1016/j.neuroimage.2019.116094
  • 发表时间:
    2019-11-15
  • 期刊:
  • 影响因子:
    5.7
  • 作者:
    Machado, Ines;Toews, Matthew;Ou, Yangming
  • 通讯作者:
    Ou, Yangming
Efficient and robust model-to-image alignment using 3D scale-invariant features.
  • DOI:
    10.1016/j.media.2012.11.002
  • 发表时间:
    2013-04
  • 期刊:
  • 影响因子:
    10.9
  • 作者:
    Toews, Matthew;Wells, William M., III
  • 通讯作者:
    Wells, William M., III
Deep Radiomic Analysis Based on Modeling Information Flow in Convolutional Neural Networks
  • DOI:
    10.1109/access.2019.2930238
  • 发表时间:
    2019-01-01
  • 期刊:
  • 影响因子:
    3.9
  • 作者:
    Chaddad, Ahmad;Toews, Matthew;Niazi, Tamim
  • 通讯作者:
    Niazi, Tamim
Hybrid MRI-Ultrasound acquisitions, and scannerless real-time imaging
  • DOI:
    10.1002/mrm.26467
  • 发表时间:
    2017-09-01
  • 期刊:
  • 影响因子:
    3.3
  • 作者:
    Preiswerk, Frank;Toews, Matthew;Madore, Bruno
  • 通讯作者:
    Madore, Bruno

Toews, Matthew的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Toews, Matthew', 18)}}的其他基金

Feature-based methods for 3D medical image analysis
基于特征的 3D 医学图像分析方法
  • 批准号:
    RGPIN-2016-04407
  • 财政年份:
    2022
  • 资助金额:
    $ 1.97万
  • 项目类别:
    Discovery Grants Program - Individual
Feature-based methods for 3D medical image analysis
基于特征的 3D 医学图像分析方法
  • 批准号:
    RGPIN-2016-04407
  • 财政年份:
    2021
  • 资助金额:
    $ 1.97万
  • 项目类别:
    Discovery Grants Program - Individual
Feature-based methods for 3D medical image analysis
基于特征的 3D 医学图像分析方法
  • 批准号:
    RGPIN-2016-04407
  • 财政年份:
    2020
  • 资助金额:
    $ 1.97万
  • 项目类别:
    Discovery Grants Program - Individual
Feature-based methods for 3D medical image analysis
基于特征的 3D 医学图像分析方法
  • 批准号:
    RGPIN-2016-04407
  • 财政年份:
    2019
  • 资助金额:
    $ 1.97万
  • 项目类别:
    Discovery Grants Program - Individual
Feature-based methods for 3D medical image analysis
基于特征的 3D 医学图像分析方法
  • 批准号:
    RGPIN-2016-04407
  • 财政年份:
    2017
  • 资助金额:
    $ 1.97万
  • 项目类别:
    Discovery Grants Program - Individual
2D Hyperspectral Satellite Image-based Detection of Forest Fires
基于二维高光谱卫星图像的森林火灾检测
  • 批准号:
    517957-2017
  • 财政年份:
    2017
  • 资助金额:
    $ 1.97万
  • 项目类别:
    Engage Grants Program
Feature-based methods for 3D medical image analysis
基于特征的 3D 医学图像分析方法
  • 批准号:
    RGPIN-2016-04407
  • 财政年份:
    2016
  • 资助金额:
    $ 1.97万
  • 项目类别:
    Discovery Grants Program - Individual
Development of a Precision Eye Motion Tracking System for Integration into a High Resolution Glasses-Free Virtual Reality Display
开发用于集成到高分辨率裸眼虚拟现实显示器的精密眼动跟踪系统
  • 批准号:
    504268-2016
  • 财政年份:
    2016
  • 资助金额:
    $ 1.97万
  • 项目类别:
    Engage Grants Program
Statistical Modeling of Brain Anatomy
大脑解剖学的统计建模
  • 批准号:
    357803-2008
  • 财政年份:
    2009
  • 资助金额:
    $ 1.97万
  • 项目类别:
    Postdoctoral Fellowships
Statistical Modeling of Brain Anatomy
大脑解剖学的统计建模
  • 批准号:
    357803-2008
  • 财政年份:
    2008
  • 资助金额:
    $ 1.97万
  • 项目类别:
    Postdoctoral Fellowships

相似国自然基金

Data-driven Recommendation System Construction of an Online Medical Platform Based on the Fusion of Information
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国青年学者研究基金项目
Exploring the Intrinsic Mechanisms of CEO Turnover and Market Reaction: An Explanation Based on Information Asymmetry
  • 批准号:
    W2433169
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国学者研究基金项目
含Re、Ru先进镍基单晶高温合金中TCP相成核—生长机理的原位动态研究
  • 批准号:
    52301178
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
NbZrTi基多主元合金中化学不均匀性对辐照行为的影响研究
  • 批准号:
    12305290
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
眼表菌群影响糖尿病患者干眼发生的人群流行病学研究
  • 批准号:
    82371110
  • 批准年份:
    2023
  • 资助金额:
    49.00 万元
  • 项目类别:
    面上项目
镍基UNS N10003合金辐照位错环演化机制及其对力学性能的影响研究
  • 批准号:
    12375280
  • 批准年份:
    2023
  • 资助金额:
    53.00 万元
  • 项目类别:
    面上项目
CuAgSe基热电材料的结构特性与构效关系研究
  • 批准号:
    22375214
  • 批准年份:
    2023
  • 资助金额:
    50.00 万元
  • 项目类别:
    面上项目
基于大数据定量研究城市化对中国季节性流感传播的影响及其机理
  • 批准号:
    82003509
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Automated Machine Learning-Based Brain Artery Segmentation, Anatomical Prior Labeling, and Feature Extraction on MR Angiography
基于自动机器学习的脑动脉分割、解剖先验标记和 MR 血管造影特征提取
  • 批准号:
    10759721
  • 财政年份:
    2023
  • 资助金额:
    $ 1.97万
  • 项目类别:
Uncovering therapeutic-associated biomarkers via machine learning and feature engineering approaches
通过机器学习和特征工程方法发现治疗相关的生物标志物
  • 批准号:
    10564098
  • 财政年份:
    2022
  • 资助金额:
    $ 1.97万
  • 项目类别:
Feature-based methods for 3D medical image analysis
基于特征的 3D 医学图像分析方法
  • 批准号:
    RGPIN-2016-04407
  • 财政年份:
    2022
  • 资助金额:
    $ 1.97万
  • 项目类别:
    Discovery Grants Program - Individual
Feature-based methods for 3D medical image analysis
基于特征的 3D 医学图像分析方法
  • 批准号:
    RGPIN-2016-04407
  • 财政年份:
    2021
  • 资助金额:
    $ 1.97万
  • 项目类别:
    Discovery Grants Program - Individual
Comparison of Feature Selection Methods and Machine Learning Classifiers with Computed Tomography Radiomics-based Features for Predicting Chronic Obstructive Pulmonary Disease
特征选择方法和机器学习分类器与基于计算机断层扫描放射组学特征的预测慢性阻塞性肺疾病的比较
  • 批准号:
    466971
  • 财政年份:
    2021
  • 资助金额:
    $ 1.97万
  • 项目类别:
    Studentship Programs
Feature-based methods for 3D medical image analysis
基于特征的 3D 医学图像分析方法
  • 批准号:
    RGPIN-2016-04407
  • 财政年份:
    2020
  • 资助金额:
    $ 1.97万
  • 项目类别:
    Discovery Grants Program - Individual
Neural Mechanisms for Feature-Based Attention
基于特征的注意力的神经机制
  • 批准号:
    10540709
  • 财政年份:
    2019
  • 资助金额:
    $ 1.97万
  • 项目类别:
Neural Mechanisms for Feature-Based Attention
基于特征的注意力的神经机制
  • 批准号:
    10316229
  • 财政年份:
    2019
  • 资助金额:
    $ 1.97万
  • 项目类别:
Feature-based methods for 3D medical image analysis
基于特征的 3D 医学图像分析方法
  • 批准号:
    RGPIN-2016-04407
  • 财政年份:
    2019
  • 资助金额:
    $ 1.97万
  • 项目类别:
    Discovery Grants Program - Individual
Development of diversity-robust acoustic feature signatures for environmental sounds based on multi-scale fractal dimension and establishment of its applied methods
基于多尺度分形维数的环境声音多样性鲁棒声学特征特征的开发及其应用方法的建立
  • 批准号:
    18K11378
  • 财政年份:
    2018
  • 资助金额:
    $ 1.97万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了