Analysis of advanced discretizations of partial differential equations
偏微分方程的高级离散化分析
基本信息
- 批准号:RGPIN-2015-05733
- 负责人:
- 金额:$ 1.82万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2018
- 资助国家:加拿大
- 起止时间:2018-01-01 至 2019-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Modelling and simulation using partial differential equations are ubiquitous in science and engineering, including astronomy, meteorology, oceanography, seismology, geophysics, geology, economics, fluid mechanics, solid state physics, and quantum mechanics. In the last few decades we have seen an enormous increase in the complexity of a typical simulation that can be run on a computer. One reason is of course the amazing technological leaps in computer hardware we have been witnessing. On the other hand, perhaps surprisingly, it is estimated that the development of fast algorithms has had roughly the same impact as that of the hardware improvements. In fact, we expect much more: The existing fast algorithms and their theory can be compared to the tip of an iceberg, with most of the treasures yet to be discovered. The theme of the proposed project is the theoretical understanding of two important classes of numerical algorithms for solving partial differential equations: Adaptive methods and geometric discretization techniques. While adaptive methods can be described as algorithms that distribute computing resources in a "smartest" way so as to minimize waste of effort, the goal of geometric discretization techniques is to preserve fundamental geometric properties of the original differential equations. The latter techniques are known to be generally preferable to the more conventional methods, and in many cases, such as simulations of bio-chemical molecules, they are the only reasonable choice. The current project aims to further mathematical understanding of certain numerical algorithms belonging to either or both of the aforementioned classes. First, we plan to design new fast algorithms for solving various equations that are used to model bio-membranes, large scale ocean flows, and electromagnetic phenomena. Second, we will perform rigorous mathematical analysis of the designed algorithms, building a comprehensive theory that explains how the algorithms behave in different situations. This is important since no algorithm is completely fool proof, and depending on the particular problem at hand, one might want to choose different algorithms. The third aim of the project is mathematical analysis of some existing geometric discretization methods that are used in simulations of sub-nucleonic matter and of violent astronomical events such as black hole collisions. These methods work reasonably well in practice, but not without difficult unresolved problems, and currently we have a very little understanding of them from mathematical standpoint. We expect that rigorous mathematical treatment will not only give more confidence to the practitioners, but also open up possibilities to resolve the issues and improve upon the existing algorithms.**
利用偏微分方程进行建模和仿真在科学和工程中是普遍存在的,包括天文学、气象学、海洋学、地震学、地球物理、地质学、经济学、流体力学、固体物理学和量子力学。在过去的几十年里,我们看到可以在计算机上运行的典型模拟的复杂性大大增加。其中一个原因当然是我们一直目睹的计算机硬件领域令人惊叹的技术飞跃。另一方面,也许令人惊讶的是,据估计,快速算法的发展产生了与硬件改进大致相同的影响。事实上,我们期待的还有更多:现有的快速算法和他们的理论可以比作冰山一角,大多数宝藏还没有被发现。该项目的主题是从理论上理解求解偏微分方程的两类重要的数值算法:自适应方法和几何离散化技术。虽然自适应方法可以被描述为以最智能的方式分配计算资源以最大限度地减少浪费的算法,但几何离散化技术的目标是保持原始微分方程的基本几何性质。众所周知,后一种技术通常比更传统的方法更可取,在许多情况下,例如生物化学分子的模拟,它们是唯一合理的选择。目前的项目旨在加深对属于上述两类中的一类或两类的某些数值算法的数学理解。首先,我们计划设计新的快速算法来求解用于模拟生物膜、大规模海洋流动和电磁现象的各种方程。其次,我们将对设计的算法进行严格的数学分析,建立一个全面的理论来解释算法在不同情况下的行为。这一点很重要,因为没有一种算法是完全可靠的,并且根据手头的特定问题,人们可能想要选择不同的算法。该项目的第三个目标是对一些现有的几何离散化方法进行数学分析,这些方法用于模拟亚核子物质和剧烈天文事件,如黑洞碰撞。这些方法在实践中运作得相当好,但也不是没有困难的悬而未决的问题,目前我们从数学的角度对它们的理解很少。我们期待严谨的数学处理不仅会给医学从业者带来更多信心,还会为解决问题开辟可能性,并在现有医学算法的基础上进行改进。**
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Tsogtgerel, Gantumur其他文献
ON THE CONSISTENCY OF THE COMBINATORIAL CODIFFERENTIAL
- DOI:
10.1090/s0002-9947-2014-06134-5 - 发表时间:
2014-10-01 - 期刊:
- 影响因子:1.3
- 作者:
Arnold, Douglas N.;Falk, Richard S.;Tsogtgerel, Gantumur - 通讯作者:
Tsogtgerel, Gantumur
Tsogtgerel, Gantumur的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Tsogtgerel, Gantumur', 18)}}的其他基金
Analysis of geometric discretization methods
几何离散化方法分析
- 批准号:
RGPIN-2020-04389 - 财政年份:2022
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Analysis of geometric discretization methods
几何离散化方法分析
- 批准号:
RGPIN-2020-04389 - 财政年份:2021
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Analysis of geometric discretization methods
几何离散化方法分析
- 批准号:
RGPIN-2020-04389 - 财政年份:2020
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Analysis of advanced discretizations of partial differential equations
偏微分方程的高级离散化分析
- 批准号:
RGPIN-2015-05733 - 财政年份:2019
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Analysis of advanced discretizations of partial differential equations
偏微分方程的高级离散化分析
- 批准号:
RGPIN-2015-05733 - 财政年份:2017
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Analysis of advanced discretizations of partial differential equations
偏微分方程的高级离散化分析
- 批准号:
478017-2015 - 财政年份:2017
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Accelerator Supplements
Analysis of advanced discretizations of partial differential equations
偏微分方程的高级离散化分析
- 批准号:
RGPIN-2015-05733 - 财政年份:2016
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Analysis of advanced discretizations of partial differential equations
偏微分方程的高级离散化分析
- 批准号:
478017-2015 - 财政年份:2016
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Accelerator Supplements
Analysis of advanced discretizations of partial differential equations
偏微分方程的高级离散化分析
- 批准号:
RGPIN-2015-05733 - 财政年份:2015
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Analysis of advanced discretizations of partial differential equations
偏微分方程的高级离散化分析
- 批准号:
478017-2015 - 财政年份:2015
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Accelerator Supplements
相似国自然基金
面向用户体验的IMT-Advanced系统跨层无线资源分配技术研究
- 批准号:61201232
- 批准年份:2012
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
LTE-Advanced中继网络关键技术研究
- 批准号:61171096
- 批准年份:2011
- 资助金额:60.0 万元
- 项目类别:面上项目
隧道超前探测的三分量光纤地震加速度检波机理与应用研究
- 批准号:51079080
- 批准年份:2010
- 资助金额:32.0 万元
- 项目类别:面上项目
IMT-Advanced协作中继网络中的网络编码研究
- 批准号:61040005
- 批准年份:2010
- 资助金额:10.0 万元
- 项目类别:专项基金项目
基于干扰预测的IMT-Advanced多小区干扰抑制技术研究
- 批准号:61001116
- 批准年份:2010
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
面向IMT-Advanced的移动组播关键技术研究
- 批准号:61001071
- 批准年份:2010
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
晚期糖基化终产物受体与视网膜母细胞瘤蛋白在前列腺癌细胞中的相互作用及意义
- 批准号:30700835
- 批准年份:2007
- 资助金额:16.0 万元
- 项目类别:青年科学基金项目
相似海外基金
In-Touch: Implementation of a person-centered palliative care iNtervention To imprOve comfort, QUality of Life and social engagement of people with advanced dementia in Care Homes
In-Touch:实施以人为本的姑息治疗干预措施,以提高护理院中晚期痴呆症患者的舒适度、生活质量和社会参与度
- 批准号:
10102690 - 财政年份:2024
- 资助金额:
$ 1.82万 - 项目类别:
EU-Funded
Advanced AI and RobotIcS for autonomous task pErformance
先进的人工智能和机器人控制系统可实现自主任务执行
- 批准号:
10110390 - 财政年份:2024
- 资助金额:
$ 1.82万 - 项目类别:
EU-Funded
Advanced Modelling Platform with Moving Ventricular Walls for Increasing Speed to Market of Heart Pumps
具有移动心室壁的先进建模平台可加快心脏泵的上市速度
- 批准号:
10071797 - 财政年份:2024
- 资助金额:
$ 1.82万 - 项目类别:
Collaborative R&D
Advanced Aeroponics 2: Value engineering to unlock 3x ROI in horticulture
Advanced Aeroponics 2:价值工程可实现园艺领域 3 倍的投资回报率
- 批准号:
10089184 - 财政年份:2024
- 资助金额:
$ 1.82万 - 项目类别:
Collaborative R&D
Measurement, analysis and application of advanced lubricant materials
先进润滑材料的测量、分析与应用
- 批准号:
10089539 - 财政年份:2024
- 资助金额:
$ 1.82万 - 项目类别:
Collaborative R&D
Biophilica - Analysis of bio-coatings as an alternative to PU-coatings for advanced product applications
Biophilica - 分析生物涂层作为先进产品应用的 PU 涂层的替代品
- 批准号:
10089592 - 财政年份:2024
- 资助金额:
$ 1.82万 - 项目类别:
Collaborative R&D
Advanced HR-ICP-MS facility for marine, Antarctic and environmental samples
用于海洋、南极和环境样品的先进 HR-ICP-MS 设施
- 批准号:
LE240100039 - 财政年份:2024
- 资助金额:
$ 1.82万 - 项目类别:
Linkage Infrastructure, Equipment and Facilities
Zwitterion-based electrolytes for advanced energy technologies
用于先进能源技术的两性离子电解质
- 批准号:
DP240101407 - 财政年份:2024
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Projects
Mem-Fast Membranes as Enablers for Future Biorefineries: from Fabrication to Advanced Separation Technologies
Mem-Fast 膜作为未来生物精炼的推动者:从制造到先进的分离技术
- 批准号:
EP/Y032004/1 - 财政年份:2024
- 资助金额:
$ 1.82万 - 项目类别:
Research Grant
Advanced Multiscale Biological Imaging using European Infrastructures
利用欧洲基础设施进行先进的多尺度生物成像
- 批准号:
EP/Y036654/1 - 财政年份:2024
- 资助金额:
$ 1.82万 - 项目类别:
Research Grant