Navigation and Control for Autonomous Spacecraft Proximity Operations with Uncooperative Satellites

非合作卫星自主航天器接近操作的导航和控制

基本信息

  • 批准号:
    RGPIN-2014-03825
  • 负责人:
  • 金额:
    $ 1.68万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2018
  • 资助国家:
    加拿大
  • 起止时间:
    2018-01-01 至 2019-12-31
  • 项目状态:
    已结题

项目摘要

- Importance of On-Orbit Servicing**Today, satellites are being used for many different applications, such as remote sensing, global navigation and scientific research. They also provide provide real-time, worldwide communication, including radio, telephone, internet, and television. In remote regions where landline telecommunication and broadband internet capabilities are limited to non-existent, such as Northern Canada, satellite phones and satellite-based internet connections are the only means of communication. A recent study determined that more than 1,200 satellites will be launched over the next 10 years, and revenues from the manufacture and implementation of these satellites is expected to reach $194 billion. While most will perform without major problems, statistics predict that a small but significant number will experience on-orbit anomalies or failures of various severity, resulting in losses of billions of dollars for governments and private organizations. As demonstrated by numerous studies, servicing damaged or failed satellites while in orbit with servicer spacecraft could achieve substantial savings.**- Technical Challenges**On-orbit servicing requires the servicer spacecraft to perform challenging proximity operations, such as visual inspection and relative motion control for rendezvous and docking. To make these proximity operations feasible, the navigation and control capabilities must be improved over traditional single-satellite missions, which means significantly increased autonomy, and highly accurate relative navigation and trajectory control. These challenges are further complicated in practical situations because, due to mechanical or electrical failures, or fuel depletion, the satellite to be serviced will likely be uncooperative, in the sense that it could be rotating at an unknown angular rate, have no communication capabilities, be of an uncertain shape, or have unknown physical parameters (mass and mass moments of inertia). Moreover, un-modeled orbital perturbations can disturb the relative motion of the spacecraft, thus impacting the capability to perform accurate maneuvers safely. **- Objectives and Proposal**In this context, the main objective of this research is to develop intelligent navigation and control systems enabling autonomous spacecraft proximity operations with uncooperative satellites, thereby advancing on-orbit servicing technologies. Specifically, vision-based relative navigation techniques relying on stereo cameras, to be merged with innovative adaptive control theories, will be proposed. These systems will be experimentally validated at the existing Spacecraft Proximity Operations facility, which consists of two small compressed air-propelled spacecraft platforms that can determine and control their relative motion in a laboratory environment.**- Outcome and Benefits to Canada **The outcome of this research program will be a set of guidelines and tools that enable spacecraft designers to develop the most advanced navigation and control systems for spacecraft in close proximity. The proposed program will lead to increased autonomy, safer operations, faster response times, higher motion control accuracy and enhanced robustness of on-orbit servicing missions. This, in turn, will increase the capabilities of these systems, and make on-orbit servicing of uncooperative satellites feasible. Given the increasing interests in such complex space operations in Canada, this research will place Canadian space organizations at the forefront of these technologies, in this niche of the global space market. As an added benefit, the techniques developed will have application to other aerospace-related problems, including those related to unmanned aerial vehicles.
- ** 今天,卫星被用于许多不同的应用,如遥感、全球导航和科学研究。它们还提供实时的全球通信,包括无线电,电话,互联网和电视。在固定电话和宽带互联网能力有限的偏远地区,如北方加拿大,卫星电话和基于卫星的互联网连接是唯一的通信手段。最近的一项研究确定,今后10年将发射1,200多颗卫星,这些卫星的制造和实施收入预计将达到1,940亿美元。虽然大多数卫星的运行不会出现重大问题,但统计数据预测,少数但相当数量的卫星将出现各种严重程度的在轨异常或故障,给政府和私人组织造成数十亿美元的损失。正如许多研究所表明的那样,在轨道上使用服务航天器维修受损或故障的卫星可以节省大量费用。** 在轨服务要求服务航天器进行具有挑战性的近距离操作,如目视检查和交会对接的相对运动控制。为了使这些近距离操作可行,导航和控制能力必须比传统的单卫星任务有所提高,这意味着显著提高自主性,以及高度精确的相对导航和轨迹控制。这些挑战在实际情况中更加复杂,因为由于机械或电气故障或燃料耗尽,待服务的卫星可能不合作,即它可能以未知的角速率旋转,没有通信能力,形状不确定,或具有未知的物理参数(质量和质量惯性矩)。此外,未建模的轨道摄动可能会干扰航天器的相对运动,从而影响安全执行精确机动的能力。**-目标和建议 ** 在这方面,这项研究的主要目标是开发智能导航和控制系统,使航天器能够与不合作的卫星进行自主的近距离操作,从而推进在轨服务技术。具体而言,基于视觉的相对导航技术依赖于立体摄像机,与创新的自适应控制理论相结合,将被提出。这些系统将在现有的航天器近距离操作设施中进行实验验证,该设施由两个小型压缩空气推进航天器平台组成,可以在实验室环境中确定和控制它们的相对运动。** 这一研究方案的成果将是一套准则和工具,使航天器设计者能够为近距离航天器开发最先进的导航和控制系统。拟议的计划将提高自主性,更安全的操作,更快的响应时间,更高的运动控制精度和增强在轨服务任务的鲁棒性。这反过来将提高这些系统的能力,并使不合作卫星的在轨服务成为可能。鉴于加拿大对这种复杂的空间活动的兴趣日益增加,这项研究将使加拿大的空间组织在全球空间市场的这一特殊领域处于这些技术的前沿。作为一个额外的好处,所开发的技术将应用于其他航空航天相关问题,包括与无人驾驶航空器有关的问题。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ulrich, Steve其他文献

Real-time saliency detection for greyscale and colour images
  • DOI:
    10.1007/s00371-020-01865-x
  • 发表时间:
    2020-06-13
  • 期刊:
  • 影响因子:
    3.5
  • 作者:
    Shi, Jian-Feng;Ulrich, Steve;Ruel, Stephane
  • 通讯作者:
    Ruel, Stephane
Adaptive extended Kalman filtering strategies for spacecraft formation relative navigation
  • DOI:
    10.1016/j.actaastro.2020.10.016
  • 发表时间:
    2021-01-01
  • 期刊:
  • 影响因子:
    3.5
  • 作者:
    Fraser, Cory T.;Ulrich, Steve
  • 通讯作者:
    Ulrich, Steve
Modeling and Direct Adaptive Control of a Flexible-Joint Manipulator
  • DOI:
    10.2514/1.54083
  • 发表时间:
    2012-01-01
  • 期刊:
  • 影响因子:
    2.6
  • 作者:
    Ulrich, Steve;Sasiadek, Jurek Z.;Barkana, Itzhak
  • 通讯作者:
    Barkana, Itzhak

Ulrich, Steve的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ulrich, Steve', 18)}}的其他基金

Autonomous Spacecraft Proximity Operations with Uncooperative Resident Space Objects
自主航天器与不合作驻留空间物体的接近操作
  • 批准号:
    RGPIN-2020-07243
  • 财政年份:
    2022
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual
Autonomous Spacecraft Proximity Operations with Uncooperative Resident Space Objects
自主航天器与不合作驻留空间物体的接近操作
  • 批准号:
    RGPIN-2020-07243
  • 财政年份:
    2021
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual
Autonomous Spacecraft Proximity Operations with Uncooperative Resident Space Objects
自主航天器与不合作驻留空间物体的接近操作
  • 批准号:
    RGPIN-2020-07243
  • 财政年份:
    2020
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual
Navigation and Control for Autonomous Spacecraft Proximity Operations with Uncooperative Satellites
非合作卫星自主航天器接近操作的导航和控制
  • 批准号:
    RGPIN-2014-03825
  • 财政年份:
    2019
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual
Enhanced In-Flight Mass and Center of Gravity Estimation Algorithms
增强的飞行质量和重心估计算法
  • 批准号:
    528355-2018
  • 财政年份:
    2018
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Engage Grants Program
Navigation and Control for Autonomous Spacecraft Proximity Operations with Uncooperative Satellites
非合作卫星自主航天器接近操作的导航和控制
  • 批准号:
    RGPIN-2014-03825
  • 财政年份:
    2017
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual
Navigation and Control for Autonomous Spacecraft Proximity Operations with Uncooperative Satellites
非合作卫星自主航天器接近操作的导航和控制
  • 批准号:
    RGPIN-2014-03825
  • 财政年份:
    2016
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual
Navigation and Control for Autonomous Spacecraft Proximity Operations with Uncooperative Satellites
非合作卫星自主航天器接近操作的导航和控制
  • 批准号:
    RGPIN-2014-03825
  • 财政年份:
    2015
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual
Thermal imager-based computer vision for autonomous rendezvous and docking
基于热成像仪的计算机视觉,用于自主交会对接
  • 批准号:
    470485-2014
  • 财政年份:
    2014
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Engage Grants Program
Navigation and Control for Autonomous Spacecraft Proximity Operations with Uncooperative Satellites
非合作卫星自主航天器接近操作的导航和控制
  • 批准号:
    RGPIN-2014-03825
  • 财政年份:
    2014
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

Cortical control of internal state in the insular cortex-claustrum region
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    25 万元
  • 项目类别:

相似海外基金

EFRI BRAID: Resilient autonomous navigation inspired by the insect central complex and sensorimotor control motifs
EFRI BRAID:受昆虫中枢复合体和感觉运动控制图案启发的弹性自主导航
  • 批准号:
    2318081
  • 财政年份:
    2023
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Standard Grant
Autonomous Navigation and Control of Indoor UAVs
室内无人机自主导航与控制
  • 批准号:
    574555-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 1.68万
  • 项目类别:
    University Undergraduate Student Research Awards
Autonomous Guidance, Navigation, and Control of Spacecraft Formation Flying on Highly Elliptical Orbits in the Presence of Gravitational, Third-Body, Drag and Solar Radiation Pressure Perturbations
在存在引力、第三体、阻力和太阳辐射压力扰动的情况下,在高椭圆轨道上飞行的航天器编队的自主制导、导航和控制
  • 批准号:
    570065-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Control and Navigation of Autonomous Unmanned Vehicles (AUVs)
自主无人驾驶车辆 (AUV) 的控制和导航
  • 批准号:
    573414-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 1.68万
  • 项目类别:
    University Undergraduate Student Research Awards
Collaborative Research: Design, Flight Control, and Autonomous Navigation of Bioinspired Morphing Micro Aerial Vehicles for Operation in Confined Spaces
合作研究:用于密闭空间操作的仿生变形微型飞行器的设计、飞行控制和自主导航
  • 批准号:
    2140650
  • 财政年份:
    2022
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Standard Grant
Collaborative Research: Design, Flight Control, and Autonomous Navigation of Bioinspired Morphing Micro Aerial Vehicles for Operation in Confined Spaces
合作研究:用于密闭空间操作的仿生变形微型飞行器的设计、飞行控制和自主导航
  • 批准号:
    2142519
  • 财政年份:
    2022
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Standard Grant
AUTONOMOUS SYSTEMS: CONTROL, NAVIGATION, DECISION-MAKING, AND APPLICATIONS
自主系统:控制、导航、决策和应用
  • 批准号:
    563112-2021
  • 财政年份:
    2021
  • 资助金额:
    $ 1.68万
  • 项目类别:
    University Undergraduate Student Research Awards
Autonomous Guidance, Navigation, and Control Using Vector Code Correlation Algorithm for Landing on Far-Distant Small Bodies
利用矢量码相关算法实现远距离小天体着陆的自主制导、导航和控制
  • 批准号:
    20J23574
  • 财政年份:
    2020
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Navigation and Control for Autonomous Spacecraft Proximity Operations with Uncooperative Satellites
非合作卫星自主航天器接近操作的导航和控制
  • 批准号:
    RGPIN-2014-03825
  • 财政年份:
    2019
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual
CRII: RI: Lyapunov-Certified Cognitive Control for Safe Autonomous Navigation in Unknown Environments
CRII:RI:用于未知环境中安全自主导航的李亚普诺夫认证认知控制
  • 批准号:
    1755568
  • 财政年份:
    2018
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了