Multimodal Representation Learning for Retail Product Ontology

零售产品本体的多模态表示学习

基本信息

  • 批准号:
    522736-2018
  • 负责人:
  • 金额:
    $ 0.91万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Engage Plus Grants Program
  • 财政年份:
    2018
  • 资助国家:
    加拿大
  • 起止时间:
    2018-01-01 至 2019-12-31
  • 项目状态:
    已结题

项目摘要

In the past decade, retailers have experienced a massive surge of information ranging from how their products**sell and which products their customers prefer, to how their promotional campaigns perform. This dramatic**change in data availability was mainly due to advances in the Internet-of-Things and data warehousing,**allowing billions of customer transactions to be logged in big data centers. This abundance of information,**however, cannot easily translate into benefits for the retailer and customer unless it is rigorously analyzed to**guide business decisions. It comes as no surprise that Big Data analytics are now becoming a business**imperative in the realm of retail, with more and more retailers applying data mining technologies to transform**their processes, from product recommendations to sales forecasting. Still, a large amount of the raw data**available to retailers is incomplete and too generic to justify meaningful analysis. For example, many products**are characterized only by name, type, and a brief textual description, whereas attributes such as typical**purchase patterns, the demographics to which the product appeals, and whether it is a luxury brand are usually**absent. It is entirely up to the manual effort of human experts to identify these "hidden" attributes, but this**incurs significant costs and delays to the retailer or any third party that offers services on big data analytics. The**goal of this work is to develop novel methodologies based on machine learning technologies to automatically**discover these hidden attributes with minimal human intervention. These methods will learn non-obvious**information by mining text and images associated with each product, which will involve a combination of**techniques from Natural Language Processing and Computer Vision. Through this process one can produce**rich product ontologies that allow for effective market-driven analytics.
在过去的十年里,零售商经历了大量的信息激增,从他们的产品**如何销售,他们的客户喜欢哪些产品,到他们的促销活动如何进行。数据可用性的这种戏剧性**变化主要是由于物联网和数据仓库的进步,**允许在大数据中心记录数十亿客户交易。然而,这些丰富的信息**除非经过严格的分析以**指导商业决策,否则很难转化为零售商和客户的利益。随着越来越多的零售商应用数据挖掘技术来改变他们的流程,从产品推荐到销售预测,大数据分析现在正成为零售领域的一项业务**,这并不令人意外。尽管如此,零售商可以获得的大量原始数据**并不完整,而且过于笼统,无法证明有意义的分析是合理的。例如,许多产品**只通过名称、类型和简短的文字描述来表征,而诸如典型的**购买模式、产品吸引的人口统计学以及它是否是奢侈品牌等属性通常**缺失。识别这些“隐藏”属性完全取决于人类专家的人工努力,但这**会给零售商或任何提供大数据分析服务的第三方带来巨大的成本和延误。这项工作的**目标是开发基于机器学习技术的新方法,以便在最少的人工干预下自动**发现这些隐藏的属性。这些方法将通过挖掘与每个产品相关的文本和图像来学习不明显的**信息,这将涉及自然语言处理和计算机视觉的**技术的组合。通过这个过程,人们可以产生**丰富的产品本体,从而实现有效的市场驱动型分析。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Veneris, Andreas其他文献

Robust QBF Encodings for Sequential Circuits with Applications to Verification, Debug, and Test
  • DOI:
    10.1109/tc.2010.74
  • 发表时间:
    2010-07-01
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Mangassarian, Hratch;Veneris, Andreas;Benedetti, Marco
  • 通讯作者:
    Benedetti, Marco
Automated Design Debugging With Maximum Satisfiability

Veneris, Andreas的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Veneris, Andreas', 18)}}的其他基金

Automated Smart Contract Synthesis and Verification for Distributed Ledger Blockchain Technology
分布式账本区块链技术的自动化智能合约合成和验证
  • 批准号:
    RGPIN-2019-04354
  • 财政年份:
    2022
  • 资助金额:
    $ 0.91万
  • 项目类别:
    Discovery Grants Program - Individual
Automated Smart Contract Synthesis and Verification for Distributed Ledger Blockchain Technology
分布式账本区块链技术的自动化智能合约合成和验证
  • 批准号:
    RGPIN-2019-04354
  • 财政年份:
    2021
  • 资助金额:
    $ 0.91万
  • 项目类别:
    Discovery Grants Program - Individual
Automated Smart Contract Synthesis and Verification for Distributed Ledger Blockchain Technology
分布式账本区块链技术的自动化智能合约合成和验证
  • 批准号:
    RGPIN-2019-04354
  • 财政年份:
    2020
  • 资助金额:
    $ 0.91万
  • 项目类别:
    Discovery Grants Program - Individual
Automated Smart Contract Synthesis and Verification for Distributed Ledger Blockchain Technology
分布式账本区块链技术的自动化智能合约合成和验证
  • 批准号:
    RGPIN-2019-04354
  • 财政年份:
    2019
  • 资助金额:
    $ 0.91万
  • 项目类别:
    Discovery Grants Program - Individual
Theory and Methodology for Performance-Driven Automation in RTL and Testbench Debugging
RTL 和测试台调试中性能驱动自动化的理论和方法
  • 批准号:
    RGPIN-2014-04275
  • 财政年份:
    2018
  • 资助金额:
    $ 0.91万
  • 项目类别:
    Discovery Grants Program - Individual
Theory and Methodology for Performance-Driven Automation in RTL and Testbench Debugging
RTL 和测试台调试中性能驱动自动化的理论和方法
  • 批准号:
    RGPIN-2014-04275
  • 财政年份:
    2017
  • 资助金额:
    $ 0.91万
  • 项目类别:
    Discovery Grants Program - Individual
Multimodal representation learning for retail product ontology
零售产品本体的多模态表示学习
  • 批准号:
    508083-2017
  • 财政年份:
    2017
  • 资助金额:
    $ 0.91万
  • 项目类别:
    Engage Grants Program
Theory and Methodology for Performance-Driven Automation in RTL and Testbench Debugging
RTL 和测试台调试中性能驱动自动化的理论和方法
  • 批准号:
    RGPIN-2014-04275
  • 财政年份:
    2016
  • 资助金额:
    $ 0.91万
  • 项目类别:
    Discovery Grants Program - Individual
Theory and Methodology for Performance-Driven Automation in RTL and Testbench Debugging
RTL 和测试台调试中性能驱动自动化的理论和方法
  • 批准号:
    RGPIN-2014-04275
  • 财政年份:
    2015
  • 资助金额:
    $ 0.91万
  • 项目类别:
    Discovery Grants Program - Individual
Theory and Methodology for Performance-Driven Automation in RTL and Testbench Debugging
RTL 和测试台调试中性能驱动自动化的理论和方法
  • 批准号:
    RGPIN-2014-04275
  • 财政年份:
    2014
  • 资助金额:
    $ 0.91万
  • 项目类别:
    Discovery Grants Program - Individual

相似海外基金

CAREER: Optimal Transport Beyond Probability Measures for Robust Geometric Representation Learning
职业生涯:超越概率测量的最佳传输以实现稳健的几何表示学习
  • 批准号:
    2339898
  • 财政年份:
    2024
  • 资助金额:
    $ 0.91万
  • 项目类别:
    Continuing Grant
AI4PEX: Artificial Intelligence and Machine Learning for Enhanced Representation of Processes and Extremes in Earth System Models
AI4PEX:人工智能和机器学习,用于增强地球系统模型中过程和极值的表示
  • 批准号:
    10103109
  • 财政年份:
    2024
  • 资助金额:
    $ 0.91万
  • 项目类别:
    EU-Funded
Sonar Foundational Model for Representation Learning and Automatic Target Recognition Systems in Underwater Maritime Environment
水下海洋环境中表示学习和自动目标识别系统的声纳基础模型
  • 批准号:
    2903803
  • 财政年份:
    2024
  • 资助金额:
    $ 0.91万
  • 项目类别:
    Studentship
Artificial Intelligence and Machine Learning for Enhanced Representation of Processes and Extremes in Earth System Models (AI4PEX)
人工智能和机器学习增强地球系统模型中过程和极值的表示(AI4PEX)
  • 批准号:
    10093450
  • 财政年份:
    2024
  • 资助金额:
    $ 0.91万
  • 项目类别:
    EU-Funded
Collaborative Research: RI: Medium: Lie group representation learning for vision
协作研究:RI:中:视觉的李群表示学习
  • 批准号:
    2313151
  • 财政年份:
    2023
  • 资助金额:
    $ 0.91万
  • 项目类别:
    Continuing Grant
CAREER: Ethnic-racial discrimination influences on neural representation of threat learning in Latina girls: A multivariate modeling approach
职业:民族种族歧视对拉丁裔女孩威胁学习的神经表征的影响:多元建模方法
  • 批准号:
    2239067
  • 财政年份:
    2023
  • 资助金额:
    $ 0.91万
  • 项目类别:
    Continuing Grant
Representation Learning for Deep Anomaly Detection
用于深度异常检测的表示学习
  • 批准号:
    23K11222
  • 财政年份:
    2023
  • 资助金额:
    $ 0.91万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Trustworthy decentralized AI for large-scale IoT representation learning
用于大规模物联网表征学习的值得信赖的去中心化人工智能
  • 批准号:
    22KJ0878
  • 财政年份:
    2023
  • 资助金额:
    $ 0.91万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Spatial Calibration of Head-Mounted Displays Based on Implicit Function Representation of Light Fields Using Deep Learning
基于深度学习光场隐式函数表示的头戴式显示器空间校准
  • 批准号:
    23K16920
  • 财政年份:
    2023
  • 资助金额:
    $ 0.91万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Unifying Pre-training and Multilingual Semantic Representation Learning for Low-resource Neural Machine Translation
统一预训练和多语言语义表示学习以实现低资源神经机器翻译
  • 批准号:
    22KJ1843
  • 财政年份:
    2023
  • 资助金额:
    $ 0.91万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了