Efficient algorithms and applications of symbolic computation
符号计算的高效算法及应用
基本信息
- 批准号:RGPIN-2015-06197
- 负责人:
- 金额:$ 1.31万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2018
- 资助国家:加拿大
- 起止时间:2018-01-01 至 2019-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The overarching theme of this proposed program is the design, analysis and implementation of efficient algorithms for a number of important non-commutative algebraic structures in symbolic computation (also called computer algebra), such as Ore (skew) polynomials, polynomials over some non-commutative rings, generalized differential-difference algebras and matrices over these non-commutative algebras. Their study is motivated by many applications in coding theory, control theory, cryptography and engineering, etc.******The challenge in this area is that these non-commutative algebras generally have a much more complex structure when compared with commutative case. In particular, many of the algorithmic breakthroughs in symbolic computation over the past three decades do not obviously apply in non-commutative domains. This is due both to the non-existence of particular mathematical properties in these rings or their inherently more difficult formulations. My research under this program will be to consider some of the most important computational problems in these non-commutative algebras at both a theoretical and practical level, which include fast algorithms for factoring Ore polynomials (both simple variable and multivariate cases), computing normal forms and inverses of matrices over Ore polynomial rings, and fast algorithms for computing Groebner bases in generalized differential-difference algebra and hope to achieve a unified and efficient approach to many well-known non-commutative domains. We also wish to give some applications, e.g., computing Gelfand-Kirillov dimensions, and classifying Post-Lie algebras. The algorithmic advances of this proposal will be implemented in computer algebra software such as Maple, SAGE and Singular. ****The proposed research plans all involve extensive training of highly qualified personnel (HQP) for their future positions in academia and industry.********
该提出的程序的总体主题是在符号计算中的许多重要非指数代数结构(也称为计算机代数)的设计,分析和实施,例如矿石(skew)多项式,多项方面的多项式,在某些非指挥性的差异范围内,总体上的差异差异和分数。他们的研究是由编码理论,控制理论,密码学和工程等的许多应用所激发的。特别是,在过去三十年中,符号计算中的许多算法突破显然不适用于非交通域中。这既是由于这些环中特定的数学特性不存在,或者它们本质上更困难的公式。 My research under this program will be to consider some of the most important computational problems in these non-commutative algebras at both a theoretical and practical level, which include fast algorithms for factoring Ore polynomials (both simple variable and multivariate cases), computing normal forms and inverses of materies over Ore polynomial rings, and fast algorithms for computing Groebner bases in generalized differential-difference代数和希望为许多众所周知的非交流领域实现统一和有效的方法。我们还希望提供一些应用程序,例如计算gelfand-kirilov尺寸,并分类LIE后代数。该提案的算法进步将在计算机代数软件(例如Maple,Sage和Singular)中实施。 ****拟议的研究计划均涉及对高素质人员(HQP)在学术界和工业中的未来职位进行广泛培训。****
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Zhang, Yang其他文献
Assembling multidomain protein structures through analogous global structural alignments
通过类似的全局结构比对组装多域蛋白质结构
- DOI:
10.1073/pnas.1905068116 - 发表时间:
2019-08-06 - 期刊:
- 影响因子:11.1
- 作者:
Zhou, Xiaogen;Hu, Jun;Zhang, Yang - 通讯作者:
Zhang, Yang
Charge Transport in Nanoscale "All-Inorganic" Networks of Semiconductor Nanorods Linked by Metal Domains
- DOI:
10.1021/nn3006625 - 发表时间:
2012-04-01 - 期刊:
- 影响因子:17.1
- 作者:
Lavieville, Romain;Zhang, Yang;Krahne, Roman - 通讯作者:
Krahne, Roman
Neural coding of formant-exaggerated speech in the infant brain
- DOI:
10.1111/j.1467-7687.2010.01004.x - 发表时间:
2011-05-01 - 期刊:
- 影响因子:3.7
- 作者:
Zhang, Yang;Koerner, Tess;Carney, Edward - 通讯作者:
Carney, Edward
Aqueous extract of Fritillariae cirrhosae induces cellular apoptosis through activation of STATs-mediated immunomodulation
川贝母水提取物通过激活 STAT 介导的免疫调节诱导细胞凋亡
- DOI:
10.1016/j.jep.2019.112338 - 发表时间:
2020-10-28 - 期刊:
- 影响因子:5.4
- 作者:
Li, Rui;Zhang, Yang;Zhao, Qi - 通讯作者:
Zhao, Qi
Electricity price prediction based on hybrid model of adam optimized LSTM neural network and wavelet transform
- DOI:
10.1016/j.energy.2019.07.134 - 发表时间:
2019-11-15 - 期刊:
- 影响因子:9
- 作者:
Chang, Zihan;Zhang, Yang;Chen, Wenbo - 通讯作者:
Chen, Wenbo
Zhang, Yang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Zhang, Yang', 18)}}的其他基金
Efficient algorithms for the symbolic computation of matrices
矩阵符号计算的高效算法
- 批准号:
RGPIN-2020-06746 - 财政年份:2022
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
Efficient algorithms for the symbolic computation of matrices
矩阵符号计算的高效算法
- 批准号:
RGPIN-2020-06746 - 财政年份:2021
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
Efficient algorithms for the symbolic computation of matrices
矩阵符号计算的高效算法
- 批准号:
RGPIN-2020-06746 - 财政年份:2020
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
Efficient algorithms and applications of symbolic computation
符号计算的高效算法及应用
- 批准号:
RGPIN-2015-06197 - 财政年份:2019
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
Electronic Textbook Hub for Schools
学校电子教科书中心
- 批准号:
531286-2018 - 财政年份:2018
- 资助金额:
$ 1.31万 - 项目类别:
Experience Awards (previously Industrial Undergraduate Student Research Awards)
Efficient algorithms and applications of symbolic computation
符号计算的高效算法及应用
- 批准号:
RGPIN-2015-06197 - 财政年份:2017
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
Efficient algorithms and applications of symbolic computation
符号计算的高效算法及应用
- 批准号:
RGPIN-2015-06197 - 财政年份:2016
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
Efficient algorithms and applications of symbolic computation
符号计算的高效算法及应用
- 批准号:
RGPIN-2015-06197 - 财政年份:2015
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
Analysis of positive and negative regulators of Ras/MAPK signalling
Ras/MAPK信号的正负调节因子分析
- 批准号:
482847-2015 - 财政年份:2015
- 资助金额:
$ 1.31万 - 项目类别:
University Undergraduate Student Research Awards
Noncommutative structures in computer algebra
计算机代数中的非交换结构
- 批准号:
312386-2010 - 财政年份:2014
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
分布式非凸非光滑优化问题的凸松弛及高低阶加速算法研究
- 批准号:12371308
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
资源受限下集成学习算法设计与硬件实现研究
- 批准号:62372198
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于物理信息神经网络的电磁场快速算法研究
- 批准号:52377005
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
考虑桩-土-水耦合效应的饱和砂土变形与流动问题的SPH模型与高效算法研究
- 批准号:12302257
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向高维不平衡数据的分类集成算法研究
- 批准号:62306119
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Robust and efficient statistical learning algorithms with applications in actuarial science
稳健高效的统计学习算法在精算科学中的应用
- 批准号:
RGPIN-2020-07064 - 财政年份:2022
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
SCH: Heterogenous, dynamic synthetic data: From algorithms to clinical applications
SCH:异构动态合成数据:从算法到临床应用
- 批准号:
10559690 - 财政年份:2022
- 资助金额:
$ 1.31万 - 项目类别:
Efficient algorithms for ideal lattices, with applications
理想晶格的高效算法及其应用
- 批准号:
RGPIN-2019-04209 - 财政年份:2022
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
Use of Wearable Sensors to Assess Prosthetic Alignment in Veterans with Unilateral Transtibial Amputations
使用可穿戴传感器评估单侧小腿截肢退伍军人的假肢对准情况
- 批准号:
10483310 - 财政年份:2022
- 资助金额:
$ 1.31万 - 项目类别:
SCH: Heterogenous, dynamic synthetic data: From algorithms to clinical applications
SCH:异构动态合成数据:从算法到临床应用
- 批准号:
10437156 - 财政年份:2022
- 资助金额:
$ 1.31万 - 项目类别: