Efficient algorithms for the symbolic computation of matrices
矩阵符号计算的高效算法
基本信息
- 批准号:RGPIN-2020-06746
- 负责人:
- 金额:$ 2.99万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2020
- 资助国家:加拿大
- 起止时间:2020-01-01 至 2021-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Symbolic computation (also called computer algebra) is a relatively recent research area in computer science and mathematics, which refers to the study and development of algorithms and software for manipulating mathematical expressions and other mathematical objects, in particular, mathematical computations performed symbolically rather than numerically. Because of its lack of numerical errors, symbolic computation is widely used in mathematical research, engineering, and science.
The overarching goal of this grant proposal is the design, analysis and implementation of efficient algorithms for matrices and tensors over a number of important algebraic structures in symbolic computation, such as computing various generalized inverses and normal forms, rank decomposition, simultaneous decomposition and solving matrix equations over various fields and polynomial rings. Their study is motivated by numerous applications in control theory, machine learning, data science, engineering, signal and color image processing, statistics, neural network, etc.
For matrices over some fields, above questions have been explored in the past decades. Recently efficient symbolic algorithms for matrices over quaternion and generalized polynomials have attracted more and more attentions, in particular, these questions for tensors. We plan to employ some symbolic computation techniques such as Groebner bases to investigate these questions. We expect that this will lead to more efficient algorithms for computing generalized inverses and solving matrix (tensor) equations and systems of differential and difference equations. This should provide both theoretical and practical improvements over currently known algorithms.
Finally, the algorithmic advances of this proposal will be implemented in computer algebra software such as Maple and SAGE. The projects all involve extensive training of highly qualified personnel (HQP) for their future positions in academia and industry.
符号计算(也称为计算机代数)是计算机科学和数学中一个相对较新的研究领域,它指的是研究和开发处理数学表达式和其他数学对象的算法和软件,特别是以符号而不是数字方式执行的数学计算。由于没有数值误差,符号计算在数学研究、工程和科学中得到了广泛的应用。
这项拨款计划的首要目标是设计、分析和实现符号计算中许多重要代数结构上的矩阵和张量的有效算法,如计算各种广义逆和范式、秩分解、同时分解和求解不同域和多项式环上的矩阵方程。他们的研究受到控制理论、机器学习、数据科学、工程、信号和彩色图像处理、统计学、神经网络等领域大量应用的推动。
对于某些领域的矩阵,在过去的几十年里已经探索了上述问题。近年来,四元数矩阵和广义多项式的有效符号算法引起了越来越多的关注,尤其是张量的符号算法。我们计划使用一些符号计算技术,如Groebner基来研究这些问题。我们预计,这将导致更有效的算法来计算广义逆和求解矩阵(张量)方程和微分方程组和差分方程组。这应该会对目前已知的算法提供理论和实践上的改进。
最后,该方案的算法改进将在Maple和SAGE等计算机代数软件中实现。这些项目都涉及对高素质人才(HQP)的广泛培训,以适应他们未来在学术界和工业界的职位。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Zhang, Yang其他文献
Dynamic change of COVID-19 lung infection evaluated using co-registration of serial chest CT images.
- DOI:
10.3389/fpubh.2022.915615 - 发表时间:
2022 - 期刊:
- 影响因子:5.2
- 作者:
Chen, Xiao;Zhang, Yang;Cao, Guoquan;Zhou, Jiahuan;Lin, Ya;Chen, Boyang;Nie, Ke;Fu, Gangze;Su, Min-Ying;Wang, Meihao - 通讯作者:
Wang, Meihao
Impact of future climate policy scenarios on air quality and aerosol cloud interactions using an advanced version of CESM/CAM5: Part II. Future trend analysis and impacts of projected anthropogenic emissions
- DOI:
10.1016/j.atmosenv.2016.12.034 - 发表时间:
2017-03-01 - 期刊:
- 影响因子:5
- 作者:
Glotfelty, Timothy;Zhang, Yang - 通讯作者:
Zhang, Yang
The Relationship Between Negative Life Events and Nonsuicidal Self-Injury Among Chinese Adolescents: A Moderated-Mediation Model.
- DOI:
10.2147/ndt.s386179 - 发表时间:
2022 - 期刊:
- 影响因子:3.2
- 作者:
Zhang, Yang;Suo, Xingbo;Zhang, Yuebing;Zhang, Shenshuai;Yang, Menglan;Qian, Liju;Shang, Luning;Zhang, Dong;Xu, Fangfang;Li, Wu - 通讯作者:
Li, Wu
Shear properties of the interface between ultra-high performance concrete and normal strength concrete
超高性能混凝土与普通强度混凝土界面的剪切性能
- DOI:
10.1016/j.conbuildmat.2020.118455 - 发表时间:
2020-07-10 - 期刊:
- 影响因子:7.4
- 作者:
Zhang, Yang;Zhu, Ping;Wu, Jie - 通讯作者:
Wu, Jie
Development and validation of a random forest model for predicting radiation pneumonitis in lung cancer patients receiving moderately hypofractionated radiotherapy: a retrospective cohort study.
- DOI:
10.21037/atm-22-3049 - 发表时间:
2022-12 - 期刊:
- 影响因子:0
- 作者:
Zhang, Yang;Li, Zongjuan;Xiao, Han;Li, Zhenjiang;He, Jian;Du, Shisuo;Zeng, Zhaochong - 通讯作者:
Zeng, Zhaochong
Zhang, Yang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Zhang, Yang', 18)}}的其他基金
Efficient algorithms for the symbolic computation of matrices
矩阵符号计算的高效算法
- 批准号:
RGPIN-2020-06746 - 财政年份:2022
- 资助金额:
$ 2.99万 - 项目类别:
Discovery Grants Program - Individual
Efficient algorithms for the symbolic computation of matrices
矩阵符号计算的高效算法
- 批准号:
RGPIN-2020-06746 - 财政年份:2021
- 资助金额:
$ 2.99万 - 项目类别:
Discovery Grants Program - Individual
Efficient algorithms and applications of symbolic computation
符号计算的高效算法及应用
- 批准号:
RGPIN-2015-06197 - 财政年份:2019
- 资助金额:
$ 2.99万 - 项目类别:
Discovery Grants Program - Individual
Efficient algorithms and applications of symbolic computation
符号计算的高效算法及应用
- 批准号:
RGPIN-2015-06197 - 财政年份:2018
- 资助金额:
$ 2.99万 - 项目类别:
Discovery Grants Program - Individual
Electronic Textbook Hub for Schools
学校电子教科书中心
- 批准号:
531286-2018 - 财政年份:2018
- 资助金额:
$ 2.99万 - 项目类别:
Experience Awards (previously Industrial Undergraduate Student Research Awards)
Efficient algorithms and applications of symbolic computation
符号计算的高效算法及应用
- 批准号:
RGPIN-2015-06197 - 财政年份:2017
- 资助金额:
$ 2.99万 - 项目类别:
Discovery Grants Program - Individual
Efficient algorithms and applications of symbolic computation
符号计算的高效算法及应用
- 批准号:
RGPIN-2015-06197 - 财政年份:2016
- 资助金额:
$ 2.99万 - 项目类别:
Discovery Grants Program - Individual
Efficient algorithms and applications of symbolic computation
符号计算的高效算法及应用
- 批准号:
RGPIN-2015-06197 - 财政年份:2015
- 资助金额:
$ 2.99万 - 项目类别:
Discovery Grants Program - Individual
Analysis of positive and negative regulators of Ras/MAPK signalling
Ras/MAPK信号的正负调节因子分析
- 批准号:
482847-2015 - 财政年份:2015
- 资助金额:
$ 2.99万 - 项目类别:
University Undergraduate Student Research Awards
Noncommutative structures in computer algebra
计算机代数中的非交换结构
- 批准号:
312386-2010 - 财政年份:2014
- 资助金额:
$ 2.99万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
固定参数可解算法在平面图问题的应用以及和整数线性规划的关系
- 批准号:60973026
- 批准年份:2009
- 资助金额:32.0 万元
- 项目类别:面上项目
Computational Methods for Analyzing Toponome Data
- 批准号:60601030
- 批准年份:2006
- 资助金额:17.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Efficient algorithms for the symbolic computation of matrices
矩阵符号计算的高效算法
- 批准号:
RGPIN-2020-06746 - 财政年份:2022
- 资助金额:
$ 2.99万 - 项目类别:
Discovery Grants Program - Individual
Efficient algorithms for the symbolic computation of matrices
矩阵符号计算的高效算法
- 批准号:
RGPIN-2020-06746 - 财政年份:2021
- 资助金额:
$ 2.99万 - 项目类别:
Discovery Grants Program - Individual
Scalable Symbolic Control: Computationally Efficient Design of Feedback Control Algorithms to Satisfy Complex Requirements
可扩展的符号控制:满足复杂要求的反馈控制算法的计算高效设计
- 批准号:
1906164 - 财政年份:2019
- 资助金额:
$ 2.99万 - 项目类别:
Standard Grant
Efficient algorithms and applications of symbolic computation
符号计算的高效算法及应用
- 批准号:
RGPIN-2015-06197 - 财政年份:2019
- 资助金额:
$ 2.99万 - 项目类别:
Discovery Grants Program - Individual
Efficient algorithms and applications of symbolic computation
符号计算的高效算法及应用
- 批准号:
RGPIN-2015-06197 - 财政年份:2018
- 资助金额:
$ 2.99万 - 项目类别:
Discovery Grants Program - Individual
Efficient algorithms and applications of symbolic computation
符号计算的高效算法及应用
- 批准号:
RGPIN-2015-06197 - 财政年份:2017
- 资助金额:
$ 2.99万 - 项目类别:
Discovery Grants Program - Individual
Efficient algorithms and applications of symbolic computation
符号计算的高效算法及应用
- 批准号:
RGPIN-2015-06197 - 财政年份:2016
- 资助金额:
$ 2.99万 - 项目类别:
Discovery Grants Program - Individual
Efficient algorithms and applications of symbolic computation
符号计算的高效算法及应用
- 批准号:
RGPIN-2015-06197 - 财政年份:2015
- 资助金额:
$ 2.99万 - 项目类别:
Discovery Grants Program - Individual
Efficient symbolic-numeric algorithms for structured constrained differential polynamial systems
结构化约束微分多项式系统的高效符号数值算法
- 批准号:
184166-2009 - 财政年份:2015
- 资助金额:
$ 2.99万 - 项目类别:
Discovery Grants Program - Individual
Efficient symbolic-numeric algorithms for structured constrained differential polynamial systems
结构化约束微分多项式系统的高效符号数值算法
- 批准号:
184166-2009 - 财政年份:2012
- 资助金额:
$ 2.99万 - 项目类别:
Discovery Grants Program - Individual