Geometric Analysis for manifolds of curves and surfaces
曲线和曲面流形的几何分析
基本信息
- 批准号:538974-2019
- 负责人:
- 金额:$ 0.33万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:University Undergraduate Student Research Awards
- 财政年份:2019
- 资助国家:加拿大
- 起止时间:2019-01-01 至 2020-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
No summary - Aucun sommaire
无摘要- Aucun sommaire
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Darmon, Maia其他文献
Darmon, Maia的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Darmon, Maia', 18)}}的其他基金
Equivariant convolutional neural networks
等变卷积神经网络
- 批准号:
562354-2021 - 财政年份:2021
- 资助金额:
$ 0.33万 - 项目类别:
University Undergraduate Student Research Awards
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
Intelligent Patent Analysis for Optimized Technology Stack Selection:Blockchain BusinessRegistry Case Demonstration
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金项目
基于Meta-analysis的新疆棉花灌水增产模型研究
- 批准号:41601604
- 批准年份:2016
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大规模微阵列数据组的meta-analysis方法研究
- 批准号:31100958
- 批准年份:2011
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
用“后合成核磁共振分析”(retrobiosynthetic NMR analysis)技术阐明青蒿素生物合成途径
- 批准号:30470153
- 批准年份:2004
- 资助金额:22.0 万元
- 项目类别:面上项目
相似海外基金
Geometric analysis on evolving Riemannian manifolds
演化黎曼流形的几何分析
- 批准号:
23K03105 - 财政年份:2023
- 资助金额:
$ 0.33万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Geometric analysis for non-symmetric generators on Riemannian manifolds
黎曼流形上非对称生成元的几何分析
- 批准号:
22K03280 - 财政年份:2022
- 资助金额:
$ 0.33万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Geometric analysis via manifolds with corners
通过带角的流形进行几何分析
- 批准号:
RGPIN-2018-05392 - 财政年份:2022
- 资助金额:
$ 0.33万 - 项目类别:
Discovery Grants Program - Individual
Studies in geometric analysis: the Calderon problem and differential systems on manifolds
几何分析研究:卡尔德隆问题和流形上的微分系统
- 批准号:
RGPIN-2019-04622 - 财政年份:2022
- 资助金额:
$ 0.33万 - 项目类别:
Discovery Grants Program - Individual
Geometric analysis via manifolds with corners
通过带角的流形进行几何分析
- 批准号:
RGPIN-2018-05392 - 财政年份:2021
- 资助金额:
$ 0.33万 - 项目类别:
Discovery Grants Program - Individual
Studies in geometric analysis: the Calderon problem and differential systems on manifolds
几何分析研究:卡尔德隆问题和流形上的微分系统
- 批准号:
RGPIN-2019-04622 - 财政年份:2021
- 资助金额:
$ 0.33万 - 项目类别:
Discovery Grants Program - Individual
Collaborative Research: Geometric Analysis, Monopoles, and Applications to Low-Dimensional Manifolds
合作研究:几何分析、单极子以及低维流形的应用
- 批准号:
2104871 - 财政年份:2021
- 资助金额:
$ 0.33万 - 项目类别:
Standard Grant
Geometric Analysis of Einstein Manifolds and Their Generalizations
爱因斯坦流形的几何分析及其推广
- 批准号:
2212818 - 财政年份:2021
- 资助金额:
$ 0.33万 - 项目类别:
Continuing Grant
Collaborative Research: Geometric Analysis, Monopoles, and Applications to Low-Dimensional Manifolds
合作研究:几何分析、单极子以及低维流形的应用
- 批准号:
2104865 - 财政年份:2021
- 资助金额:
$ 0.33万 - 项目类别:
Standard Grant
Geometric analysis via manifolds with corners
通过带角的流形进行几何分析
- 批准号:
RGPIN-2018-05392 - 财政年份:2020
- 资助金额:
$ 0.33万 - 项目类别:
Discovery Grants Program - Individual