Advances in Biostatistics: Estimators Based on Misspecified Models and Predictions of Survival Times

生物统计学的进展:基于错误指定模型和生存时间预测的估计器

基本信息

  • 批准号:
    RGPIN-2018-04304
  • 负责人:
  • 金额:
    $ 1.31万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2019
  • 资助国家:
    加拿大
  • 起止时间:
    2019-01-01 至 2020-12-31
  • 项目状态:
    已结题

项目摘要

My proposed research program has two themes: The development and study of simple estimators of complex models, and the prediction of survival times. Such methods are of particular importance in biostatistics, and will have impact on subject areas including rainfall modelling, multiple sclerosis, and ovarian cancer.******With respect to the first theme, I plan to work in the context of time series of rainfall observations, which are complicated to describe because they take on both continuous and zero values, and are correlated over time. Estimation of the effects of factors that influence rainfall can thus be challenging. I intend to investigate the performance of an estimator that assumes that the observations are, in fact, uncorrelated. Earlier work with count data suggests that such an estimator could be well-behaved, efficient, and simpler to compute than previously considered estimators. I will evaluate the properties of this estimator, and will apply my results to the problem of estimating time trends and the Oceanic Nio Index (“El Nio”) effect on rainfall in Costa Rica. I also plan to work in the context of multiple sclerosis (MS) clinical trials where the outcome is the number of lesions detected using MRI scans of patients' brains over the course of the study period, and where patients were selected for lesion activity at baseline (a so-called “enrichment” study design). Previous authors propose a naive estimator of the effect of treatment that ignores the patient selection process. I will study the performance of an alternative estimator that can be computed with little effort, yet performs better than the nave estimator. My work will allow for improved estimation of the treatment effect and for better planning of sample sizes in enriched MS trials. I will subsequently extend our methods to other types of responses collected in enriched trials.******My second theme concerns the prediction of recurrence and death times of ovarian cancer patients. Our initial work has shown that random survival forests are a useful tool for predicting either recurrence or death times; I plan to extend these methods to allow for their simultaneous prediction. In addition, I will develop prediction intervals for survival times that allow the quantification of our uncertainty about our predictions. One challenge is that the prediction of the survival time of a patient with a low expected survival time is inherently an easier problem than the prediction of the survival time of a patient with a high expected survival time. I thus intend to develop methods for identifying subgroups of patients for whom relatively precise predictions can be computed. Ultimately, my collaborators and I hope to develop an online decision support tool that patients and their caregivers can use to guide the management of ovarian cancer risks.
我提出的研究计划有两个主题:复杂模型的简单估计器的开发和研究,以及生存时间的预测。这些方法在生物统计学中特别重要,并将对包括降雨模型、多发性硬化症和卵巢癌在内的学科领域产生影响。******关于第一个主题,我计划在降雨观测的时间序列的背景下工作,这是复杂的描述,因为它们同时具有连续和零值,并且随时间相关。因此,估计影响降雨的因素的影响可能具有挑战性。我打算研究假设观测值实际上是不相关的估计器的性能。早期使用计数数据的工作表明,这样的估计器可以表现良好、高效,并且比以前考虑的估计器更容易计算。我将评估这个估计器的特性,并将我的结果应用于估计时间趋势和海洋尼诺指数(“厄尔尼诺”)对哥斯达黎加降雨的影响的问题。我还计划在多发性硬化症(MS)临床试验的背景下工作,其中结果是在研究期间通过对患者大脑进行MRI扫描检测到的病变数量,并且在基线时选择患者进行病变活动(所谓的“浓缩”研究设计)。先前的作者提出了一个忽略患者选择过程的治疗效果的朴素估计。我将研究一种替代估计器的性能,它可以用很少的努力来计算,但比普通估计器执行得更好。我的工作将允许改进治疗效果的估计和更好的计划在丰富的MS试验的样本量。随后,我将把我们的方法扩展到在丰富的试验中收集的其他类型的反应。******我的第二个主题是卵巢癌患者复发和死亡时间的预测。我们的初步工作表明,随机生存森林是预测复发或死亡时间的有用工具;我计划扩展这些方法,以允许它们同时进行预测。此外,我将开发生存时间的预测间隔,以便量化我们对预测的不确定性。一个挑战是,预测低预期生存时间的患者的生存时间本质上比预测高预期生存时间的患者的生存时间更容易。因此,我打算开发一种方法,以确定可以计算出相对精确预测的患者亚组。最终,我和我的合作者希望开发一个在线决策支持工具,患者和他们的护理人员可以使用它来指导卵巢癌风险的管理。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Altman, Rachel其他文献

Comparing prostatic artery embolization to surgical and minimally invasive procedures for the treatment of benign prostatic hyperplasia: a systematic review and meta-analysis.
  • DOI:
    10.1186/s12894-023-01397-1
  • 发表时间:
    2024-01-28
  • 期刊:
  • 影响因子:
    2
  • 作者:
    Altman, Rachel;Ferreira, Roseanne;Barragan, Camilo;Bhojani, Naeem;Lajkosz, Katherine;Zorn, Kevin C.;Chughtai, Bilal;Annamalai, Ganesan;Elterman, Dean S.
  • 通讯作者:
    Elterman, Dean S.

Altman, Rachel的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Altman, Rachel', 18)}}的其他基金

Advances in Biostatistics: Estimators Based on Misspecified Models and Predictions of Survival Times
生物统计学的进展:基于错误指定模型和生存时间预测的估计器
  • 批准号:
    RGPIN-2018-04304
  • 财政年份:
    2022
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Advances in Biostatistics: Estimators Based on Misspecified Models and Predictions of Survival Times
生物统计学的进展:基于错误指定模型和生存时间预测的估计器
  • 批准号:
    RGPIN-2018-04304
  • 财政年份:
    2021
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Advances in Biostatistics: Estimators Based on Misspecified Models and Predictions of Survival Times
生物统计学的进展:基于错误指定模型和生存时间预测的估计器
  • 批准号:
    RGPIN-2018-04304
  • 财政年份:
    2020
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Advances in Biostatistics: Estimators Based on Misspecified Models and Predictions of Survival Times
生物统计学的进展:基于错误指定模型和生存时间预测的估计器
  • 批准号:
    RGPIN-2018-04304
  • 财政年份:
    2018
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Methods for parameter-driven and wait time models
参数驱动和等待时间模型的方法
  • 批准号:
    293140-2011
  • 财政年份:
    2017
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Methods for parameter-driven and wait time models
参数驱动和等待时间模型的方法
  • 批准号:
    293140-2011
  • 财政年份:
    2016
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Methods for parameter-driven and wait time models
参数驱动和等待时间模型的方法
  • 批准号:
    293140-2011
  • 财政年份:
    2015
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Methods for parameter-driven and wait time models
参数驱动和等待时间模型的方法
  • 批准号:
    293140-2011
  • 财政年份:
    2014
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Methods for parameter-driven and wait time models
参数驱动和等待时间模型的方法
  • 批准号:
    293140-2011
  • 财政年份:
    2012
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Methods for parameter-driven and wait time models
参数驱动和等待时间模型的方法
  • 批准号:
    293140-2011
  • 财政年份:
    2011
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual

相似海外基金

Conference: The 9th Workshop on Biostatistics and Bioinformatics
会议:第九届生物统计与生物信息学研讨会
  • 批准号:
    2409876
  • 财政年份:
    2024
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Standard Grant
Conference: SRCOS Summer Research Conference in Statistics and Biostatistics
会议:SRCOS 统计和生物统计学夏季研究会议
  • 批准号:
    2327635
  • 财政年份:
    2023
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Standard Grant
Core 1: Biostatistics & Bioinformatics Core
核心1:生物统计学
  • 批准号:
    10716157
  • 财政年份:
    2023
  • 资助金额:
    $ 1.31万
  • 项目类别:
Core 2: Biostatistics and Bioinformatics Core (BBC)
核心2:生物统计学和生物信息学核心(BBC)
  • 批准号:
    10555404
  • 财政年份:
    2023
  • 资助金额:
    $ 1.31万
  • 项目类别:
Bioinformatics and Biostatistics Core
生物信息学和生物统计学核心
  • 批准号:
    10709233
  • 财政年份:
    2023
  • 资助金额:
    $ 1.31万
  • 项目类别:
Administrative and Biostatistics Core
行政和生物统计核心
  • 批准号:
    10629066
  • 财政年份:
    2023
  • 资助金额:
    $ 1.31万
  • 项目类别:
Biostatistics and Bioinformatics Core
生物统计学和生物信息学核心
  • 批准号:
    10628987
  • 财政年份:
    2023
  • 资助金额:
    $ 1.31万
  • 项目类别:
Biostatistics and Quantitative Methods Shared Resource
生物统计学和定量方法共享资源
  • 批准号:
    10911641
  • 财政年份:
    2023
  • 资助金额:
    $ 1.31万
  • 项目类别:
CF 2: Biostatistics and Bioinformatics Core
CF 2:生物统计学和生物信息学核心
  • 批准号:
    10932619
  • 财政年份:
    2023
  • 资助金额:
    $ 1.31万
  • 项目类别:
Core 3: Biostatistics, Data Management, and Bioinformatics
核心 3:生物统计学、数据管理和生物信息学
  • 批准号:
    10931066
  • 财政年份:
    2023
  • 资助金额:
    $ 1.31万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了