Data-driven Dynamic Scheduling

数据驱动的动态调度

基本信息

  • 批准号:
    RGPIN-2017-06687
  • 负责人:
  • 金额:
    $ 1.46万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2019
  • 资助国家:
    加拿大
  • 起止时间:
    2019-01-01 至 2020-12-31
  • 项目状态:
    已结题

项目摘要

In dynamic scheduling problems, the aim is to optimally assign arriving jobs (e.g., product orders in manufacturing; patients in healthcare) to resources (e.g., machines in manufacturing; nurses in healthcare) over time in a continuously-changing environment (e.g., machines break down; new more urgent patients arrive). ******While many optimization methods for scheduling have been proposed and implemented in scheduling software, in practice the resulting optimal' schedules are not necessarily acceptable to the end users. Frequently, the schedules are manually modified before implementation, and, if the schedules repeatedly do not meet user expectations, the software itself might be discarded. The main premise of this proposal is that the true characteristics of the system and user preferences are captured by the data collected about the problem and its past (implemented) solutions, and that as a result the mismatch between the schedules created by software and those desired by the user can be reduced or eliminated through data-driven modelling. ******Modern information systems are capable of collecting data on past job and resource characteristics (e.g., arrival times, processing times), real-time system status updates (e.g., number of jobs currently in the system), and past scheduling decisions (e.g., decisions made by managers in the past). Traditionally, each of these data sources has been considered in isolation by distinct research areas, namely queueing theory, classical scheduling, and inverse scheduling, respectively. ******My research program will leverage the availability of both historical and real-time system and preference data through the integration of combinatorial scheduling, queueing theory and inverse optimization techniques. The resulting hybrid scheduling models will capture system characteristics and user preferences better than traditional approaches, producing schedules that would be more readily accepted by the users. Thus, this research has the potential to increase the adoption of scheduling software in practice, which will in turn lead to greater productivity and efficiency of those systems.
在动态调度问题中,目标是最优地分配到达的作业(例如,制造业中的产品订单;医疗保健中的患者)到资源(例如,制造业中的机器;医疗保健中的护士)在不断变化的环境中随着时间的推移(例如,机器坏了;新的更紧急的病人来了)。** 虽然已经提出了许多优化调度方法,并在调度软件中实现,但实际上最终用户不一定能接受最佳调度。通常,在实现之前手动修改调度,并且如果调度反复不满足用户期望,则软件本身可能被丢弃。该提案的主要前提是,系统的真实特征和用户偏好由收集的关于问题及其过去(实施)解决方案的数据捕获,因此,软件创建的时间表与用户期望的时间表之间的不匹配可以通过数据驱动的建模来减少或消除。** 现代信息系统能够收集关于过去工作和资源特征的数据(例如,到达时间、处理时间),实时系统状态更新(例如,当前在系统中的作业的数量),以及过去的调度决策(例如,过去管理者的决策)。传统上,这些数据源中的每一个都被认为是孤立的不同的研究领域,即调度理论,经典调度和逆调度,分别。** 我的研究计划将通过组合调度,优化理论和逆优化技术的集成,利用历史和实时系统和偏好数据的可用性。由此产生的混合调度模型将捕捉系统的特点和用户的喜好比传统的方法,产生的时间表,将更容易被用户接受。因此,这项研究有可能增加调度软件在实践中的采用,这反过来又会导致这些系统的生产力和效率更高。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Terekhov, Daria其他文献

A robust optimization model for tactical capacity planning in an outpatient setting
  • DOI:
    10.1007/s10729-020-09528-y
  • 发表时间:
    2020-11-20
  • 期刊:
  • 影响因子:
    3.6
  • 作者:
    Aslani, Nazanin;Kuzgunkaya, Onur;Terekhov, Daria
  • 通讯作者:
    Terekhov, Daria

Terekhov, Daria的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Terekhov, Daria', 18)}}的其他基金

Data-driven Dynamic Scheduling
数据驱动的动态调度
  • 批准号:
    RGPIN-2017-06687
  • 财政年份:
    2022
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Individual
Data-driven Dynamic Scheduling
数据驱动的动态调度
  • 批准号:
    RGPIN-2017-06687
  • 财政年份:
    2021
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Individual
Data-driven Dynamic Scheduling
数据驱动的动态调度
  • 批准号:
    RGPIN-2017-06687
  • 财政年份:
    2020
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Individual
Data-driven Dynamic Scheduling
数据驱动的动态调度
  • 批准号:
    RGPIN-2017-06687
  • 财政年份:
    2018
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Individual
Data-driven Dynamic Scheduling
数据驱动的动态调度
  • 批准号:
    RGPIN-2017-06687
  • 财政年份:
    2017
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Individual
Scheduling in Uncertain Enviroments
不确定环境中的调度
  • 批准号:
    363503-2008
  • 财政年份:
    2010
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Scheduling in Uncertain Enviroments
不确定环境中的调度
  • 批准号:
    363503-2008
  • 财政年份:
    2009
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Scheduling in Uncertain Enviroments
不确定环境中的调度
  • 批准号:
    363503-2008
  • 财政年份:
    2008
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Postgraduate Scholarships - Doctoral

相似国自然基金

Data-driven Recommendation System Construction of an Online Medical Platform Based on the Fusion of Information
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国青年学者研究基金项目
基于Cache的远程计时攻击研究
  • 批准号:
    60772082
  • 批准年份:
    2007
  • 资助金额:
    28.0 万元
  • 项目类别:
    面上项目

相似海外基金

ERI: Data-Driven Analysis and Dynamic Modeling of Residential Power Demand Behavior: Using Long-Term Real-World Data from Rural Electric Systems
ERI:住宅电力需求行为的数据驱动分析和动态建模:使用农村电力系统的长期真实数据
  • 批准号:
    2301411
  • 财政年份:
    2024
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Standard Grant
CPS: Medium: Collaborative Research: Developing Data-driven Robustness and Safety from Single Agent Settings to Stochastic Dynamic Teams: Theory and Applications
CPS:中:协作研究:从单代理设置到随机动态团队开发数据驱动的鲁棒性和安全性:理论与应用
  • 批准号:
    2240982
  • 财政年份:
    2023
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Standard Grant
CPS: Medium: Collaborative Research: Developing Data-driven Robustness and Safety from Single Agent Settings to Stochastic Dynamic Teams: Theory and Applications
CPS:中:协作研究:从单代理设置到随机动态团队开发数据驱动的鲁棒性和安全性:理论与应用
  • 批准号:
    2240981
  • 财政年份:
    2023
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Standard Grant
CAREER: Data-driven dynamic adaptive optimization for next generation power system operation
职业:数据驱动的下一代电力系统运行的动态自适应优化
  • 批准号:
    2316675
  • 财政年份:
    2023
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Standard Grant
CAREER: Data-Driven Control of High-Rate Dynamic Systems
职业:高速动态系统的数据驱动控制
  • 批准号:
    2237696
  • 财政年份:
    2023
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Continuing Grant
Efficient and rapidly SCAlable EU-wide evidence-driven Pandemic response plans through dynamic Epidemic data assimilation
通过动态流行病数据同化,制定高效、快速、可扩展的欧盟范围内证据驱动的流行病应对计划
  • 批准号:
    10051037
  • 财政年份:
    2023
  • 资助金额:
    $ 1.46万
  • 项目类别:
    EU-Funded
Multiscale data-driven failure prediction of hydrogen composite vessels under static and dynamic impact loading
静态和动态冲击载荷下氢复合材料容器的多尺度数据驱动失效预测
  • 批准号:
    EP/Y024567/1
  • 财政年份:
    2023
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Fellowship
Data-Driven Dynamic State-Estimation for Modern Power Systems
现代电力系统的数据驱动动态状态估计
  • 批准号:
    2221784
  • 财政年份:
    2022
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Standard Grant
Electric Fleets with On-site Renewable Energy Sources (EFORES): Data-driven Dynamic Dispatching and Charging under Uncertainties
现场可再生能源电动车队(EFORES):不确定性下数据驱动的动态调度和充电
  • 批准号:
    EP/W028727/1
  • 财政年份:
    2022
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Research Grant
A data-driven dynamic optimization framework for digital commerce platforms
数据驱动的数字商务平台动态优化框架
  • 批准号:
    568869-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了