Statistical Learning With Expert Knowledge and Complex Data
利用专业知识和复杂数据进行统计学习
基本信息
- 批准号:RGPIN-2020-05337
- 负责人:
- 金额:$ 1.75万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2020
- 资助国家:加拿大
- 起止时间:2020-01-01 至 2021-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Making sense of data is one of the great challenges of our century. A decade ago, the major issue in many applications was to obtain relevant data and properly store it to be used in statistical modeling, inference and prediction. Today, it is much easier to collect all kinds of data. However, creating interpretable knowledge from this data, developing new learning algorithms and constructing accurate predictive models are becoming more challenging tasks.
Current approaches to statistical learning provide solutions to these problems by using and/or developing specific learning models (or a committee of them) that work with the data in hand. Often researchers have access to primary assessments of area specific experts, results of earlier surveys, or inexpensive measurements related to the problem of interest. An efficient strategy is to first examine a small number of randomly selected sets of samples from the underlying population (sometimes very massive) to either identify more representative (rank-based) data for the study or assign ranks to already observed data. The extra rank information can work in tandem with the usual learning methods to design more effective learning strategies and create an interactive learning harmony between the learning algorithms and expert knowledge.
Straightforward applications of available methods in the literature on rank-based data force stringent assumptions that are not often appropriate. My proposed research program is focused on the development of new methodologies, learning algorithms and computational tools to actively imbed the rank information of rank-based data into the learning process and produce highly accurate statistical learning techniques for data centric problems. Rank-based predictive models, deep neural networks, support vector machines and finite mixture models will be developed for efficient prediction, classification, and clustering purposes.
The developed methods will be computationally intensive in their implementation and involve complex modeling. Rigorous mathematical analysis of such models will provide insight into the process of inference from rank-based data, as well as the value of the rank information and how this information may be used to construct more reliable and highly accurate estimation and prediction models. The developed techniques will be used in real applications such as diagnosis studies in medical research (e.g., osteoporosis diagnosis using image data and radiologists' primary assessments) and/or industry (e.g., partial discharge classification in high voltage insulators).
The development of rank-based statistical learning techniques will have a high degree of potential for technology transfer and opportunities for revenue generation for Canada. The team of 10 HQP trainees of this research will have advanced multidisciplinary training to meet the growing need for multidisciplinary Canadian experts in the area of Data Science.
理解数据是我们这个世纪面临的最大挑战之一。十年前,许多应用程序中的主要问题是获取相关数据并正确存储,以便用于统计建模,推理和预测。如今,收集各种数据变得更加容易。然而,从这些数据中创建可解释的知识,开发新的学习算法和构建准确的预测模型正在成为更具挑战性的任务。
目前的统计学习方法通过使用和/或开发特定的学习模型(或一个委员会)来解决这些问题。研究人员通常可以获得特定领域专家的初步评估,早期调查的结果,或与感兴趣的问题相关的廉价测量。一个有效的策略是首先检查从基础人群中随机选择的少量样本集(有时非常大),以便为研究确定更具代表性的(基于等级的)数据,或者为已经观察到的数据分配等级。额外的等级信息可以与通常的学习方法协同工作,以设计更有效的学习策略,并在学习算法和专家知识之间创建交互式学习和谐。
直接应用现有的方法在文献中的排名为基础的数据强制严格的假设,往往是不适当的。我提出的研究计划的重点是开发新的方法,学习算法和计算工具,以积极地将基于排名的数据的排名信息嵌入到学习过程中,并为以数据为中心的问题产生高度准确的统计学习技术。基于排名的预测模型,深度神经网络,支持向量机和有限混合模型将被开发用于有效的预测,分类和聚类目的。
开发的方法将在其实施计算密集型,并涉及复杂的建模。对这些模型进行严格的数学分析,将有助于深入了解从基于等级的数据进行推断的过程,以及等级信息的价值,以及如何使用这些信息来构建更可靠和高度准确的估计和预测模型。所开发的技术将用于真实的应用中,例如医学研究中的诊断研究(例如,使用图像数据和放射科医师的初步评估的骨质疏松症诊断)和/或工业(例如,高压绝缘子中的局部放电分类)。
基于等级的统计学习技术的发展将为加拿大的技术转让和创收机会带来很大的潜力。该研究的10名HQP学员将接受高级多学科培训,以满足数据科学领域对多学科加拿大专家日益增长的需求。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
JafariJozani, Mohammad其他文献
JafariJozani, Mohammad的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('JafariJozani, Mohammad', 18)}}的其他基金
Statistical Learning With Expert Knowledge and Complex Data
利用专业知识和复杂数据进行统计学习
- 批准号:
RGPIN-2020-05337 - 财政年份:2022
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
Statistical Learning With Expert Knowledge and Complex Data
利用专业知识和复杂数据进行统计学习
- 批准号:
RGPIN-2020-05337 - 财政年份:2021
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
Statistical inference based on complex survey designs using rank information and order statistics
使用排名信息和顺序统计数据基于复杂的调查设计进行统计推断
- 批准号:
RGPIN-2015-04157 - 财政年份:2019
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
Statistical inference based on complex survey designs using rank information and order statistics
使用排名信息和顺序统计数据基于复杂的调查设计进行统计推断
- 批准号:
RGPIN-2015-04157 - 财政年份:2018
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
Statistical inference based on complex survey designs using rank information and order statistics
使用排名信息和顺序统计数据基于复杂的调查设计进行统计推断
- 批准号:
RGPIN-2015-04157 - 财政年份:2017
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
Partial discharge source classification based on analyzing pd pulse waveforms using statistical pattern recognition techniques
基于使用统计模式识别技术分析局部放电脉冲波形的局部放电源分类
- 批准号:
499895-2016 - 财政年份:2016
- 资助金额:
$ 1.75万 - 项目类别:
Engage Grants Program
Statistical inference based on complex survey designs using rank information and order statistics
使用排名信息和顺序统计数据基于复杂的调查设计进行统计推断
- 批准号:
RGPIN-2015-04157 - 财政年份:2016
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
Developing a statistical methodology for sizing battery storage system for smoothing solar PV generation
开发一种统计方法来确定电池存储系统的规模,以平滑太阳能光伏发电
- 批准号:
492107-2015 - 财政年份:2015
- 资助金额:
$ 1.75万 - 项目类别:
Engage Grants Program
Statistical inference based on complex survey designs using rank information and order statistics
使用排名信息和顺序统计数据基于复杂的调查设计进行统计推断
- 批准号:
RGPIN-2015-04157 - 财政年份:2015
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
Decision theoretic inference in problems involving balanced loss functions, constraint parameter spaces and finite mixture models
涉及平衡损失函数、约束参数空间和有限混合模型问题的决策理论推理
- 批准号:
386575-2010 - 财政年份:2014
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
Understanding structural evolution of galaxies with machine learning
- 批准号:n/a
- 批准年份:2022
- 资助金额:10.0 万元
- 项目类别:省市级项目
煤矿安全人机混合群智感知任务的约束动态多目标Q-learning进化分配
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于领弹失效考量的智能弹药编队短时在线Q-learning协同控制机理
- 批准号:62003314
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
集成上下文张量分解的e-learning资源推荐方法研究
- 批准号:61902016
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
具有时序迁移能力的Spiking-Transfer learning (脉冲-迁移学习)方法研究
- 批准号:61806040
- 批准年份:2018
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
基于Deep-learning的三江源区冰川监测动态识别技术研究
- 批准号:51769027
- 批准年份:2017
- 资助金额:38.0 万元
- 项目类别:地区科学基金项目
具有时序处理能力的Spiking-Deep Learning(脉冲深度学习)方法研究
- 批准号:61573081
- 批准年份:2015
- 资助金额:64.0 万元
- 项目类别:面上项目
基于有向超图的大型个性化e-learning学习过程模型的自动生成与优化
- 批准号:61572533
- 批准年份:2015
- 资助金额:66.0 万元
- 项目类别:面上项目
E-Learning中学习者情感补偿方法的研究
- 批准号:61402392
- 批准年份:2014
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Real-time inversion using self-explainable deep learning driven by expert knowledge
使用由专家知识驱动的可自我解释的深度学习进行实时反演
- 批准号:
EP/Z000653/1 - 财政年份:2024
- 资助金额:
$ 1.75万 - 项目类别:
Research Grant
Statistical Learning With Expert Knowledge and Complex Data
利用专业知识和复杂数据进行统计学习
- 批准号:
RGPIN-2020-05337 - 财政年份:2022
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
A novel approach for landform classification based on salience detection integrating expert knowledge and deep learning
结合专家知识和深度学习的基于显着性检测的地貌分类新方法
- 批准号:
RGPIN-2022-03885 - 财政年份:2022
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
CRII: III: Informative Bayesian Learning and Data Gathering Through Expert-Acquired Data
CRII:III:通过专家获取的数据进行信息贝叶斯学习和数据收集
- 批准号:
2202395 - 财政年份:2021
- 资助金额:
$ 1.75万 - 项目类别:
Standard Grant
Collaborative Research - Characterizing the Role of Spatial Thinking in Learning Hydrogeology: A Classroom, Field, and Expert-Novice Study
协作研究 - 表征空间思维在学习水文地质学中的作用:课堂、现场和专家-新手研究
- 批准号:
2043616 - 财政年份:2021
- 资助金额:
$ 1.75万 - 项目类别:
Standard Grant
Collaborative Research - Characterizing the Role of Spatial Thinking in Learning Hydrogeology: A Classroom, Field, and Expert-Novice Study
协作研究 - 表征空间思维在学习水文地质学中的作用:课堂、现场和专家-新手研究
- 批准号:
2043620 - 财政年份:2021
- 资助金额:
$ 1.75万 - 项目类别:
Standard Grant
Statistical Learning With Expert Knowledge and Complex Data
利用专业知识和复杂数据进行统计学习
- 批准号:
RGPIN-2020-05337 - 财政年份:2021
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
Suspicious person detection based on expert-vision using deep learning and spatio-temporal modeling of human gait
基于深度学习和人类步态时空建模的专家视觉可疑人员检测
- 批准号:
20K19835 - 财政年份:2020
- 资助金额:
$ 1.75万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Becoming expert navigators with tiny brains: Learning in desert ants
成为小脑袋的导航专家:向沙漠蚂蚁学习
- 批准号:
DP200102337 - 财政年份:2020
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Projects
MRI: Acquisition of a Virtual Reality System for Expert Decision Making and Immersive Learning
MRI:获取用于专家决策和沉浸式学习的虚拟现实系统
- 批准号:
2018850 - 财政年份:2020
- 资助金额:
$ 1.75万 - 项目类别:
Standard Grant