Novel Statistical Methods with Application to Imaging Genetics

应用于影像遗传学的新统计方法

基本信息

  • 批准号:
    RGPIN-2017-06538
  • 负责人:
  • 金额:
    $ 1.53万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2019
  • 资助国家:
    加拿大
  • 起止时间:
    2019-01-01 至 2020-12-31
  • 项目状态:
    已结题

项目摘要

Imaging genetics is a rapidly evolving field that integrates individual medical images with genetic information to assess the impact of genetic variation on brain function and structure. The long term objective of this proposal is to develop novel statistical methods for imaging genetics studies. With the advent of both advanced imaging as well as genotyping techniques, many large biomedical studies have been conducted to collect imaging and genetic data. Conventional approaches for imaging genetics analysis suffer from issues such as heavy computational cost and algorithmic instability, which requires the development of fast and efficient statistical methods.******This proposal will not only enhance methodological and theoretical developments for statistical imaging genetics analysis, but also advance the understanding of the relationship between imaging and genetic data. The proposed project has the following interrelated themes. First, the PI will develop high dimensional tensor response regression models by treating the high dimensional genetic data as scalar predictors and the complex imaging data as a tensor response. The high dimensional tensor response linear regression, quantile regression and semiparametric regression models will be studied. Second, the PI will develop a high dimensional functional response linear regression model, and develop statistical inference procedures in two different directions. For the aforementioned models, the inference procedures only work for the common variants genetic data. The PI will then study the scenario when the rare variants exist, and develop methods that work for this scenario. ******The statistical methods developed in this proposal are timely and important and will be relevant to many large-scale real data sets, for example the Alzheimer's Disease Neuroimaging Initiative, the Human Connectome Project, the UK Biobank data, the Pediatric Imaging, Neurocognition, and the Genetics and Philadelphia Neurodevelopmental Cohort data. Undergraduate and graduate students as well as postdoctoral researchers will be provided with excellent training to help them to gain valuable skills that increase their chances in the job market or to start their academic career. In order to facilitate the use of the proposed new methods, the PI will implement them in R or Matlab and make software available to the public, along with publishing the corresponding research reports.
成像遗传学是一个快速发展的领域,它将个体医学图像与遗传信息相结合,以评估遗传变异对大脑功能和结构的影响。该提案的长期目标是开发用于成像遗传学研究的新的统计方法。随着先进的成像和基因分型技术的出现,许多大型生物医学研究已经进行,以收集成像和遗传数据。传统的成像遗传学分析方法存在计算成本高和算法不稳定等问题,这需要开发快速有效的统计方法。这一建议不仅将促进统计成像遗传学分析的方法和理论发展,而且还将促进对成像和遗传数据之间关系的理解。拟议的项目有以下相互关联的主题。首先,PI将开发高维张量响应回归模型,将高维遗传数据视为标量预测因子,将复杂成像数据视为张量响应。研究了高维张量响应线性回归、分位数回归和半参数回归模型。其次,PI将开发一个高维功能反应线性回归模型,并从两个不同的方向开发统计推断程序。对于上述模型,推断过程仅适用于常见变异遗传数据。然后,PI将研究存在罕见变异的情况,并开发适用于这种情况的方法。** 本提案中开发的统计方法是及时和重要的,将与许多大规模的真实的数据集相关,例如阿尔茨海默病神经成像倡议、人类连接组项目、英国生物库数据、儿科成像、神经认知以及遗传学和费城神经发育队列数据。本科生和研究生以及博士后研究人员将获得出色的培训,以帮助他们获得宝贵的技能,增加他们在就业市场上的机会或开始他们的学术生涯。为了促进拟议的新方法的使用,PI将在R或Matlab中实现它们,并向公众提供软件,沿着出版相应的研究报告。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Kong, Dehan其他文献

Domain selection for the varying coefficient model via local polynomial regression.
FULLY EFFICIENT ROBUST ESTIMATION, OUTLIER DETECTION AND VARIABLE SELECTION VIA PENALIZED REGRESSION
  • DOI:
    10.5705/ss.202016.0441
  • 发表时间:
    2018-04-01
  • 期刊:
  • 影响因子:
    1.4
  • 作者:
    Kong, Dehan;Bondell, Howard D.;Wu, Yichao
  • 通讯作者:
    Wu, Yichao
A Point Cloud Registration Algorithm Based on Feature Extraction and Matching
  • DOI:
    10.1155/2018/7352691
  • 发表时间:
    2018-01-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Liu, Yongshan;Kong, Dehan;Han, Guichun
  • 通讯作者:
    Han, Guichun
Federated learning for computational pathology on gigapixel whole slide images.
  • DOI:
    10.1016/j.media.2021.102298
  • 发表时间:
    2022-03
  • 期刊:
  • 影响因子:
    10.9
  • 作者:
    Lu, Ming Y.;Chen, Richard J.;Kong, Dehan;Lipkova, Jana;Singh, Rajendra;Williamson, Drew F. K.;Chen, Tiffany Y.;Mahmood, Faisal
  • 通讯作者:
    Mahmood, Faisal
Partially functional linear regression in high dimensions
  • DOI:
    10.1093/biomet/asv062
  • 发表时间:
    2016-03-01
  • 期刊:
  • 影响因子:
    2.7
  • 作者:
    Kong, Dehan;Xue, Kaijie;Zhang, Hao H.
  • 通讯作者:
    Zhang, Hao H.

Kong, Dehan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Kong, Dehan', 18)}}的其他基金

Novel Statistical Methods with Applications to Massive and Complex Dynamic Data
应用于海量复杂动态数据的新颖统计方法
  • 批准号:
    RGPIN-2022-04646
  • 财政年份:
    2022
  • 资助金额:
    $ 1.53万
  • 项目类别:
    Discovery Grants Program - Individual
Novel Statistical Methods with Application to Imaging Genetics
应用于影像遗传学的新统计方法
  • 批准号:
    RGPIN-2017-06538
  • 财政年份:
    2021
  • 资助金额:
    $ 1.53万
  • 项目类别:
    Discovery Grants Program - Individual
Novel Statistical Methods with Application to Imaging Genetics
应用于影像遗传学的新统计方法
  • 批准号:
    RGPIN-2017-06538
  • 财政年份:
    2020
  • 资助金额:
    $ 1.53万
  • 项目类别:
    Discovery Grants Program - Individual
Novel Statistical Methods with Application to Imaging Genetics
应用于影像遗传学的新统计方法
  • 批准号:
    507944-2017
  • 财政年份:
    2019
  • 资助金额:
    $ 1.53万
  • 项目类别:
    Discovery Grants Program - Accelerator Supplements
Novel Statistical Methods with Application to Imaging Genetics
应用于影像遗传学的新统计方法
  • 批准号:
    507944-2017
  • 财政年份:
    2018
  • 资助金额:
    $ 1.53万
  • 项目类别:
    Discovery Grants Program - Accelerator Supplements
Novel Statistical Methods with Application to Imaging Genetics
应用于影像遗传学的新统计方法
  • 批准号:
    RGPIN-2017-06538
  • 财政年份:
    2018
  • 资助金额:
    $ 1.53万
  • 项目类别:
    Discovery Grants Program - Individual
Novel Statistical Methods with Application to Imaging Genetics
应用于影像遗传学的新统计方法
  • 批准号:
    RGPIN-2017-06538
  • 财政年份:
    2017
  • 资助金额:
    $ 1.53万
  • 项目类别:
    Discovery Grants Program - Individual
Novel Statistical Methods with Application to Imaging Genetics
应用于影像遗传学的新统计方法
  • 批准号:
    507944-2017
  • 财政年份:
    2017
  • 资助金额:
    $ 1.53万
  • 项目类别:
    Discovery Grants Program - Accelerator Supplements

相似海外基金

Liver Fibrosis: Leveraging Novel Statistical Methods to Determine Optimal Screening Strategy for People Living with Type 2 Diabetes
肝纤维化:利用新的统计方法确定 2 型糖尿病患者的最佳筛查策略
  • 批准号:
    488421
  • 财政年份:
    2023
  • 资助金额:
    $ 1.53万
  • 项目类别:
    Operating Grants
Novel statistical genetics methods to unravel polygenic interactions in complex traits
揭示复杂性状中多基因相互作用的新统计遗传学方法
  • 批准号:
    10713965
  • 财政年份:
    2023
  • 资助金额:
    $ 1.53万
  • 项目类别:
Novel statistical methods for data with non-Euclidean geometric structure
非欧几何结构数据的新颖统计方法
  • 批准号:
    DP220102232
  • 财政年份:
    2022
  • 资助金额:
    $ 1.53万
  • 项目类别:
    Discovery Projects
Novel Statistical methods for extracting information from genetic data
从遗传数据中提取信息的新统计方法
  • 批准号:
    2744324
  • 财政年份:
    2022
  • 资助金额:
    $ 1.53万
  • 项目类别:
    Studentship
Novel Statistical Methods for Oral Microbiome Data Analysis
口腔微生物组数据分析的新统计方法
  • 批准号:
    10525318
  • 财政年份:
    2022
  • 资助金额:
    $ 1.53万
  • 项目类别:
Resolving single-cell analysis challenges via data-driven decision frameworks and novel statistical methods
通过数据驱动的决策框架和新颖的统计方法解决单细胞分析挑战
  • 批准号:
    10707308
  • 财政年份:
    2022
  • 资助金额:
    $ 1.53万
  • 项目类别:
Accelerating biomarker development through novel statistical methods for analyzing phase III/IV studies
通过分析 III/IV 期研究的新统计方法加速生物标志物开发
  • 批准号:
    10568744
  • 财政年份:
    2022
  • 资助金额:
    $ 1.53万
  • 项目类别:
Novel Statistical Data Integration Methods for Multi-View Data
多视图数据的新颖统计数据集成方法
  • 批准号:
    548103-2020
  • 财政年份:
    2022
  • 资助金额:
    $ 1.53万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Novel Statistical Integration Methods for Multi-View Data
多视图数据的新颖统计集成方法
  • 批准号:
    RGPIN-2022-03034
  • 财政年份:
    2022
  • 资助金额:
    $ 1.53万
  • 项目类别:
    Discovery Grants Program - Individual
Novel Statistical Methods in Functional and Brain Imaging Data Analysis
功能和脑成像数据分析中的新统计方法
  • 批准号:
    RGPIN-2018-04486
  • 财政年份:
    2022
  • 资助金额:
    $ 1.53万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了