Novel Statistical Methods with Applications to Massive and Complex Dynamic Data

应用于海量复杂动态数据的新颖统计方法

基本信息

  • 批准号:
    RGPIN-2022-04646
  • 负责人:
  • 金额:
    $ 2.7万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2022
  • 资助国家:
    加拿大
  • 起止时间:
    2022-01-01 至 2023-12-31
  • 项目状态:
    已结题

项目摘要

With the advent of modern technologies, massive and complex dynamic data have received increasing attention. Examples of massive and complex dynamic data include single-cell RNA sequencing data, functional magnetic resonance imaging data, and electronic health record data. Statistical analysis of these data, however, has been extremely difficult due to their sheer size and complexity. This proposal is devoted to developing a new set of statistically systematic and computationally efficient methods for analyzing massive and complex dynamic data. The proposed project has the following interrelated themes. First, the PI will model trajectories of different cell types using discrete entropy regularized optimal transport and develop a change point detection method to infer the time these cells differentiate. Second, the PI proposes to build time series models for brain dynamic functional connectivity and detect dynamic changes to help understand the relationship between brain subregions. Third, the PI plans to study weighted functional principal component analysis with informative observations. The methods will be applied to electronic health records for disease prediction and causal discovery. The statistical methods developed in this proposal are timely and important and will be relevant to many large-scale complex dynamic real data sets, for example, the Human Connectome Project and the UK Biobank. The proposed research promises to have a huge impact by contributing to groundbreaking advancements in genetics and genomics, neuroscience, and medical science. Undergraduate and graduate students will receive excellent training to help them to gain valuable skills that qualify them for attractive positions in universities, research hospitals, and industries. In order to facilitate the use of the proposed new methods, the PI will implement them in R or Python and make software available to the public, along with publishing the corresponding research reports.
随着现代技术的发展,海量、复杂的动态数据越来越受到人们的关注。大量和复杂的动态数据的示例包括单细胞RNA测序数据、功能性磁共振成像数据和电子健康记录数据。然而,由于这些数据的庞大和复杂性,对其进行统计分析极为困难。 该建议致力于开发一套新的统计系统和计算效率高的方法来分析大量和复杂的动态数据。拟议的项目有以下相互关联的主题。首先,PI将使用离散熵正则化的最优传输来模拟不同细胞类型的轨迹,并开发一种变化点检测方法来推断这些细胞分化的时间。第二,PI建议建立大脑动态功能连接的时间序列模型,并检测动态变化,以帮助理解大脑子区域之间的关系。第三,PI计划研究具有信息观测的加权函数主成分分析。这些方法将应用于电子健康记录,用于疾病预测和因果发现。 本提案中开发的统计方法是及时和重要的,将与许多大规模复杂的动态真实的数据集相关,例如人类连接组项目和英国生物库。这项拟议中的研究有望产生巨大的影响,为遗传学和基因组学、神经科学和医学科学的突破性进展做出贡献。 本科生和研究生将接受优秀的培训,以帮助他们获得有价值的技能,使他们有资格在大学,研究医院和行业的有吸引力的职位。为了促进拟议的新方法的使用,PI将用R或Python实现它们,并向公众提供软件,沿着出版相应的研究报告。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Kong, Dehan其他文献

Domain selection for the varying coefficient model via local polynomial regression.
FULLY EFFICIENT ROBUST ESTIMATION, OUTLIER DETECTION AND VARIABLE SELECTION VIA PENALIZED REGRESSION
  • DOI:
    10.5705/ss.202016.0441
  • 发表时间:
    2018-04-01
  • 期刊:
  • 影响因子:
    1.4
  • 作者:
    Kong, Dehan;Bondell, Howard D.;Wu, Yichao
  • 通讯作者:
    Wu, Yichao
A Point Cloud Registration Algorithm Based on Feature Extraction and Matching
  • DOI:
    10.1155/2018/7352691
  • 发表时间:
    2018-01-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Liu, Yongshan;Kong, Dehan;Han, Guichun
  • 通讯作者:
    Han, Guichun
Federated learning for computational pathology on gigapixel whole slide images.
  • DOI:
    10.1016/j.media.2021.102298
  • 发表时间:
    2022-03
  • 期刊:
  • 影响因子:
    10.9
  • 作者:
    Lu, Ming Y.;Chen, Richard J.;Kong, Dehan;Lipkova, Jana;Singh, Rajendra;Williamson, Drew F. K.;Chen, Tiffany Y.;Mahmood, Faisal
  • 通讯作者:
    Mahmood, Faisal
Partially functional linear regression in high dimensions
  • DOI:
    10.1093/biomet/asv062
  • 发表时间:
    2016-03-01
  • 期刊:
  • 影响因子:
    2.7
  • 作者:
    Kong, Dehan;Xue, Kaijie;Zhang, Hao H.
  • 通讯作者:
    Zhang, Hao H.

Kong, Dehan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Kong, Dehan', 18)}}的其他基金

Novel Statistical Methods with Application to Imaging Genetics
应用于影像遗传学的新统计方法
  • 批准号:
    RGPIN-2017-06538
  • 财政年份:
    2021
  • 资助金额:
    $ 2.7万
  • 项目类别:
    Discovery Grants Program - Individual
Novel Statistical Methods with Application to Imaging Genetics
应用于影像遗传学的新统计方法
  • 批准号:
    RGPIN-2017-06538
  • 财政年份:
    2020
  • 资助金额:
    $ 2.7万
  • 项目类别:
    Discovery Grants Program - Individual
Novel Statistical Methods with Application to Imaging Genetics
应用于影像遗传学的新统计方法
  • 批准号:
    RGPIN-2017-06538
  • 财政年份:
    2019
  • 资助金额:
    $ 2.7万
  • 项目类别:
    Discovery Grants Program - Individual
Novel Statistical Methods with Application to Imaging Genetics
应用于影像遗传学的新统计方法
  • 批准号:
    507944-2017
  • 财政年份:
    2019
  • 资助金额:
    $ 2.7万
  • 项目类别:
    Discovery Grants Program - Accelerator Supplements
Novel Statistical Methods with Application to Imaging Genetics
应用于影像遗传学的新统计方法
  • 批准号:
    507944-2017
  • 财政年份:
    2018
  • 资助金额:
    $ 2.7万
  • 项目类别:
    Discovery Grants Program - Accelerator Supplements
Novel Statistical Methods with Application to Imaging Genetics
应用于影像遗传学的新统计方法
  • 批准号:
    RGPIN-2017-06538
  • 财政年份:
    2018
  • 资助金额:
    $ 2.7万
  • 项目类别:
    Discovery Grants Program - Individual
Novel Statistical Methods with Application to Imaging Genetics
应用于影像遗传学的新统计方法
  • 批准号:
    RGPIN-2017-06538
  • 财政年份:
    2017
  • 资助金额:
    $ 2.7万
  • 项目类别:
    Discovery Grants Program - Individual
Novel Statistical Methods with Application to Imaging Genetics
应用于影像遗传学的新统计方法
  • 批准号:
    507944-2017
  • 财政年份:
    2017
  • 资助金额:
    $ 2.7万
  • 项目类别:
    Discovery Grants Program - Accelerator Supplements

相似海外基金

Liver Fibrosis: Leveraging Novel Statistical Methods to Determine Optimal Screening Strategy for People Living with Type 2 Diabetes
肝纤维化:利用新的统计方法确定 2 型糖尿病患者的最佳筛查策略
  • 批准号:
    488421
  • 财政年份:
    2023
  • 资助金额:
    $ 2.7万
  • 项目类别:
    Operating Grants
Novel statistical genetics methods to unravel polygenic interactions in complex traits
揭示复杂性状中多基因相互作用的新统计遗传学方法
  • 批准号:
    10713965
  • 财政年份:
    2023
  • 资助金额:
    $ 2.7万
  • 项目类别:
Novel statistical methods for data with non-Euclidean geometric structure
非欧几何结构数据的新颖统计方法
  • 批准号:
    DP220102232
  • 财政年份:
    2022
  • 资助金额:
    $ 2.7万
  • 项目类别:
    Discovery Projects
Novel Statistical methods for extracting information from genetic data
从遗传数据中提取信息的新统计方法
  • 批准号:
    2744324
  • 财政年份:
    2022
  • 资助金额:
    $ 2.7万
  • 项目类别:
    Studentship
Novel Statistical Methods for Oral Microbiome Data Analysis
口腔微生物组数据分析的新统计方法
  • 批准号:
    10525318
  • 财政年份:
    2022
  • 资助金额:
    $ 2.7万
  • 项目类别:
Resolving single-cell analysis challenges via data-driven decision frameworks and novel statistical methods
通过数据驱动的决策框架和新颖的统计方法解决单细胞分析挑战
  • 批准号:
    10707308
  • 财政年份:
    2022
  • 资助金额:
    $ 2.7万
  • 项目类别:
Accelerating biomarker development through novel statistical methods for analyzing phase III/IV studies
通过分析 III/IV 期研究的新统计方法加速生物标志物开发
  • 批准号:
    10568744
  • 财政年份:
    2022
  • 资助金额:
    $ 2.7万
  • 项目类别:
Novel Statistical Data Integration Methods for Multi-View Data
多视图数据的新颖统计数据集成方法
  • 批准号:
    548103-2020
  • 财政年份:
    2022
  • 资助金额:
    $ 2.7万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Novel Statistical Integration Methods for Multi-View Data
多视图数据的新颖统计集成方法
  • 批准号:
    RGPIN-2022-03034
  • 财政年份:
    2022
  • 资助金额:
    $ 2.7万
  • 项目类别:
    Discovery Grants Program - Individual
Novel Statistical Methods in Functional and Brain Imaging Data Analysis
功能和脑成像数据分析中的新统计方法
  • 批准号:
    RGPIN-2018-04486
  • 财政年份:
    2022
  • 资助金额:
    $ 2.7万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了