Circuits and Systems Enabling Silicon-Photonics Signaling

支持硅光子信号传输的电路和系统

基本信息

  • 批准号:
    RGPIN-2015-04120
  • 负责人:
  • 金额:
    $ 1.6万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2019
  • 资助国家:
    加拿大
  • 起止时间:
    2019-01-01 至 2020-12-31
  • 项目状态:
    已结题

项目摘要

Computing and data communications have changed the way we work, communicate, socialize, learn and educate. To maintain and improve our lifestyle, and to solve most of the challenging problems we face as a society, e.g. developing personalized medicine or a sustainable management of energy resources, our need for super-computers and data-centers that can process massive amounts of data with manageable power continues to grow. This need has driven the exponential scaling of CMOS technology and the rise of multi-core and inter-linked data processing and communication in the last decade. However, this aggressive scaling is now being imperiled by the slower pace of scaling of Input/Output (I/O) data links. For example, ultra-high performance computing systems over the next decade are expected to require Terabytes per second of aggregate data throughput over I/O links. Based on the existing trend, this means providing 10 times the I/O bandwidth for 1/10th the power over the next decade, and presents a real challenge that cannot be addressed by standard copper interconnects.****Silicon-photonics link, where the copper interconnect is replaced with an optical fiber and silicon-compatible photonic devices are driven by electronic circuits for data transmission, is a promising alternative. The end goal of our proposed research is the replacement of conventional copper-based electrical links with fully-integrated silicon-photonics electro-optical end-to-end link supporting wavelength-division multiplexing (WDM). Recent research in the optical community has enabled viable implementations of silicon-photonics devices. Our proposed research will now address the bigger picture - by co-designing circuits and photonics in one complete WDM system. We plan to work on achieving two breakthroughs that we believe are critical to the success of this technology in replacing purely electrical I/Os - (1) superior power efficiency, and (2) support for WDM. WDM provides the benefit of parallelizing numerous channels in a single optical fiber - something that is not easily possible in a copper cable. Digital-intensive integrated circuits will be designed to drive CMOS-compatible silicon-photonic devices to facilitate the electro-optical transmitter and receiver, while addressing concerns like variations, packaging, power consumption, etc.****Numerous companies and universities across the world are engaged in conventional electrical and optical interconnect technology. A complete power-efficient WDM silicon-photonics integrated system will be a disruptive technology, and have the potential to herald new companies, jobs and technologies and be potentially transformative for Canada in re-establishing its position in data communications.**
计算和数据通信改变了我们的工作,沟通,社交,学习和教育的方式。维持和改善我们的生活方式,并解决我们作为一个社会所面临的大多数具有挑战性的问题,例如开发个性化医学或能源资源的可持续管理,我们对可以以可管理能力来处理大量数据的超级计算机和数据中心的需求不断增长。这项需求推动了CMOS技术的指数缩放以及过去十年来多核和链接数据处理和通信的兴起。但是,现在,由于输入/输出(I/O)数据链接的缩放速度较慢,这种积极的缩放率正在损害。例如,预计未来十年的超高性能计算系统将需要I/O链接上的汇总数据吞吐量的每秒Terabytes。基于现有趋势,这意味着要在接下来的十年中提供I/O带宽的10倍,并在未来十年的功率上提供1/10的功率,并提出了一个真正的挑战,标准铜相互连接无法解决。****硅 - 光子学链接,铜互连在其中用光学纤维和硅的光电替代了供应的光电设备,因此可以驱动循环。我们提出的研究的最终目标是用完全集成的硅 - 光子学电位端到端链路替换传统的基于铜的电路,支持波长 - 分区多路复用(WDM)。光学界的最新研究使硅 - 光子学设备的可行实现。我们提出的研究现在将通过一个完整的WDM系统中的共同设计电路和光子学来解决更大的情况。我们计划实现两个突破,这对于该技术取代纯电I/O/OS的成功至关重要,(1)卓越的功率效率,以及(2)对WDM的支持。 WDM提供了单个光纤中众多通道并行的好处 - 铜线在铜线中不可能。数字密集型集成电路将旨在驱动CMOS兼容的硅光子设备,以促进电流发射器和接收器,同时解决诸如变化,包装,功耗等的关注。完整的功率效率WDM硅液体集成系统将是一项破坏性的技术,并有可能预示新公司,工作和技术,并有可能对加拿大重新建立其在数据通信中的地位。****** **

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Shekhar, Sudip其他文献

Crosstalk in SOI Microring Resonator-Based Filters
  • DOI:
    10.1109/jlt.2015.2480101
  • 发表时间:
    2016-06-15
  • 期刊:
  • 影响因子:
    4.7
  • 作者:
    Jayatilleka, Hasitha;Murray, Kyle;Shekhar, Sudip
  • 通讯作者:
    Shekhar, Sudip
A Dual-Polarization Silicon-Photonic Coherent Transmitter Supporting 552 Gb/s/wavelength
  • DOI:
    10.1109/jssc.2020.2988399
  • 发表时间:
    2020-09-01
  • 期刊:
  • 影响因子:
    5.4
  • 作者:
    Ahmed, Abdelrahman H.;El Moznine, Abdellatif;Shekhar, Sudip
  • 通讯作者:
    Shekhar, Sudip
Photoconductive heaters enable control of large-scale silicon photonic ring resonator circuits
  • DOI:
    10.1364/optica.6.000084
  • 发表时间:
    2019-01-20
  • 期刊:
  • 影响因子:
    10.4
  • 作者:
    Jayatilleka, Hasitha;Shoman, Hossam;Shekhar, Sudip
  • 通讯作者:
    Shekhar, Sudip
Automatic Configuration and Wavelength Locking of Coupled Silicon Ring Resonators
  • DOI:
    10.1109/jlt.2017.2769962
  • 发表时间:
    2018-01-15
  • 期刊:
  • 影响因子:
    4.7
  • 作者:
    Jayatilleka, Hasitha;Shoman, Hossam;Shekhar, Sudip
  • 通讯作者:
    Shekhar, Sudip
A Hilbert Transform Equalizer Enabling 80 MHz RF Self-Interference Cancellation for Full-Duplex Receivers

Shekhar, Sudip的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Shekhar, Sudip', 18)}}的其他基金

Integrated Circuits for Large Arrays
大型阵列集成电路
  • 批准号:
    RGPIN-2020-06239
  • 财政年份:
    2022
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Discovery Grants Program - Individual
Advanced-modulation circuits for low-power scalable wireline transceivers
适用于低功耗可扩展有线收发器的高级调制电路
  • 批准号:
    543951-2019
  • 财政年份:
    2021
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Collaborative Research and Development Grants
Electronic-photonic integrated circuits for on-chip optical isolation
用于片上光隔离的电子光子集成电路
  • 批准号:
    539204-2019
  • 财政年份:
    2021
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Collaborative Research and Development Grants
Infrastructure for silicon photonic test and development
硅光子测试和开发基础设施
  • 批准号:
    RTI-2022-00723
  • 财政年份:
    2021
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Research Tools and Instruments
Integrated Circuits for Large Arrays
大型阵列集成电路
  • 批准号:
    RGPIN-2020-06239
  • 财政年份:
    2021
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Discovery Grants Program - Individual
Phase I: High-performance clock multiplier units
第一阶段:高性能时钟倍频器单元
  • 批准号:
    560696-2021
  • 财政年份:
    2021
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Idea to Innovation
Electronic-photonic integrated circuits for on-chip optical isolation
用于片上光隔离的电子光子集成电路
  • 批准号:
    539204-2019
  • 财政年份:
    2020
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Collaborative Research and Development Grants
Advanced-modulation circuits for low-power scalable wireline transceivers
适用于低功耗可扩展有线收发器的高级调制电路
  • 批准号:
    543951-2019
  • 财政年份:
    2020
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Collaborative Research and Development Grants
Integrated Circuits for Large Arrays
大型阵列集成电路
  • 批准号:
    RGPIN-2020-06239
  • 财政年份:
    2020
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Discovery Grants Program - Individual
Electronic-photonic integrated circuits for on-chip optical isolation
用于片上光隔离的电子光子集成电路
  • 批准号:
    539204-2019
  • 财政年份:
    2019
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Collaborative Research and Development Grants

相似国自然基金

基于人类血清素神经元报告系统研究TSPYL1突变对婴儿猝死综合征的致病作用及机制
  • 批准号:
    82371176
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
新型血管微创介入智能碎溶栓系统设计与多物理效应下碎溶栓机理研究
  • 批准号:
    82302400
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于网络互连的多处理机系统故障自诊断研究
  • 批准号:
    62302107
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
地下水超采区承压含水层系统时序InSAR监测方法
  • 批准号:
    42374013
  • 批准年份:
    2023
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
在轨扰动影响下空间燃料电池系统的流动沸腾传质机理与抗扰控制研究
  • 批准号:
    52377215
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目

相似海外基金

Circuits and Systems Enabling Silicon-Photonics Signaling
支持硅光子信号传输的电路和系统
  • 批准号:
    RGPIN-2015-04120
  • 财政年份:
    2018
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Discovery Grants Program - Individual
CAREER: Enabling Brian-like Computing through 3D Neuromorphic Circuits and Systems
职业:通过 3D 神经形态电路和系统实现类 Brian 计算
  • 批准号:
    1750450
  • 财政年份:
    2018
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Continuing Grant
Circuits and Systems Enabling Silicon-Photonics Signaling
支持硅光子信号传输的电路和系统
  • 批准号:
    RGPIN-2015-04120
  • 财政年份:
    2017
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Discovery Grants Program - Individual
Circuits and Systems Enabling Silicon-Photonics Signaling
支持硅光子信号传输的电路和系统
  • 批准号:
    RGPIN-2015-04120
  • 财政年份:
    2016
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Discovery Grants Program - Individual
Circuits and Systems Enabling Silicon-Photonics Signaling
支持硅光子信号传输的电路和系统
  • 批准号:
    RGPIN-2015-04120
  • 财政年份:
    2015
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了