Branching Program Lower Bounds
分支程序下界
基本信息
- 批准号:RGPIN-2019-06288
- 负责人:
- 金额:$ 1.68万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2019
- 资助国家:加拿大
- 起止时间:2019-01-01 至 2020-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Two Topics:***I am proposing two quite independent topics: Branching program lower***bounds and machine learning. I have 30 years of experience and a great***deal of success in the first and the last six months I have taken a***few courses and read a few books in the second. In today's job market,***students tend to be drawn to Machine Learning rather than Logic (such***as Lower Bounds).There is also a large job market for HQP with Machine***Learning expertise. In addition to already existing expertise in AI***and Deep Learning, York U is starting a new program dedicated to***Machine Learning to address this need. My plan is to include training***students in this discipline in the future.******Lower Bounds in Branching Programs: ***For both practical and theoretical reasons, we would like to know the***minimum amount of time (or space) needed to solve a given***computational problem on an input of a given size. An upper bound***provides an algorithm that achieves some time bound. A lower bound***proves that no algorithm correctly solves the problem faster no matter***how clever. Proving lower bounds on general models of computation***(eg. in JAVA or a Turing Machine) is beyond our reach. For this***reason, researchers often prove lower bounds on weaker modes of***computation. The most powerful model of computation measuring the***amount of space used by an algorithm is branching programs. We will***continue in this important area of fundamental research in order to***understand more about the limits of computation.******Machine Learning:***Computers can now drive cars and find cancer in x-rays. For better or***worse, this will change the world (and the job market). Strangely,***designing these algorithms is not done by telling the computer what to***do or even by understanding what the computer does. The computers***learn themselves from lots and lots of data and lots of trial and***error. This learning process is more analogous to how brains evolved***over billions of years of learning. The machine itself is a neural***network which models both the brain circuits, which are great for***computing. The only difference with neural networks is that what they***compute is determined by weights and small changes in these weights***give you small changes in the result of the computation. The process***for finding an optimal setting of these weights is analogous to***finding the bottom of a valley. If a machine can give the correct***answers on randomly chosen training data without simply memorizing,***then we can prove that with high probability the same machine will***also work well on never seen before instances.**
两个主题:* 我提出了两个非常独立的主题:分支程序下限和机器学习。我有30年的经验,在第一个和最后六个月里取得了巨大的成功,在第二个月里我上了几门课,读了几本书。在今天的就业市场上,* 学生倾向于被机器学习而不是逻辑(如 * 下限)所吸引。具有机器学习专业知识的HQP也有很大的就业市场。除了现有的AI*** 和深度学习专业知识外,约克U正在启动一个专门用于 *** 机器学习的新项目,以满足这一需求。我的计划是在未来培训 * 学生。分支程序中的下界:*** 出于实践和理论的原因,我们想知道在给定大小的输入上解决给定 *** 计算问题所需的最小时间(或空间)。上限 * 提供了一种实现某个时间界限的算法。一个下界 * 证明,没有一个算法能更快地正确解决问题,无论 * 有多聪明。证明一般计算模型的下界 *(例如。在Java或图灵机中)是我们无法达到的。出于这个原因,研究人员经常证明较弱的计算模式的下限。衡量一个算法所使用的空间量的最强大的计算模型是分支程序。我们将 * 继续在基础研究的这一重要领域,以便 * 更多地了解计算的极限。机器学习:* 计算机现在可以驾驶汽车,并在X射线中发现癌症。不管是好是坏,这将改变世界(和就业市场)。奇怪的是,设计这些算法并不是通过告诉计算机做什么,甚至不是通过理解计算机做什么来完成的。计算机从大量的数据和大量的试验和错误中自我学习。这种学习过程更类似于大脑在数十亿年的学习过程中如何进化。这台机器本身就是一个神经网络,它模拟了大脑回路,这对计算很有帮助。与神经网络的唯一区别是,它们 * 计算的是由权重决定的,这些权重的微小变化 * 会给计算结果带来微小的变化。寻找这些权重的最佳设置的过程类似于寻找谷底。如果一台机器可以在随机选择的训练数据上给出正确的答案,而不需要简单的记忆,那么我们就可以证明,同一台机器很有可能在从未见过的情况下也能很好地工作。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Edmonds, Jeffrey其他文献
Edmonds, Jeffrey的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Edmonds, Jeffrey', 18)}}的其他基金
Branching Program Lower Bounds
分支程序下界
- 批准号:
RGPIN-2019-06288 - 财政年份:2022
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual
Branching Program Lower Bounds
分支程序下界
- 批准号:
RGPIN-2019-06288 - 财政年份:2021
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual
Branching Program Lower Bounds
分支程序下界
- 批准号:
RGPIN-2019-06288 - 财政年份:2020
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual
相似海外基金
Advancing Virtual Care in Stroke Rehabilitation through the TeleRehabilitation with Aims to Improve Lower extremity recovery post-stroke (TRAIL) program
通过远程康复推进中风康复中的虚拟护理,旨在改善中风后下肢恢复 (TRAIL) 计划
- 批准号:
495597 - 财政年份:2023
- 资助金额:
$ 1.68万 - 项目类别:
Branching Program Lower Bounds
分支程序下界
- 批准号:
RGPIN-2019-06288 - 财政年份:2022
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual
The development of a program to promote adherence to compression therapy in elderly patients with lower limb lymphedema.
制定一项计划,促进老年下肢淋巴水肿患者坚持加压治疗。
- 批准号:
22K10868 - 财政年份:2022
- 资助金额:
$ 1.68万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
The proposition of underwater exercise program to increase the respiratory muscle strength for the elderly with chronic pain in the lower limbs
老年人下肢慢性疼痛增加呼吸肌力的水下锻炼计划的提出
- 批准号:
22K17528 - 财政年份:2022
- 资助金额:
$ 1.68万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Inventing the new prevention program for anterior cruciate ligament using the fatigue index of lower limb
利用下肢疲劳指数发明前交叉韧带预防新方案
- 批准号:
21K17596 - 财政年份:2021
- 资助金额:
$ 1.68万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Advancing virtual care in stroke rehabilitation: A randomized controlled trial investigating the TeleRehabilitation with Aims to Improve Lower Extremity Recovery Post-Stroke (TRAIL) program
推进中风康复中的虚拟护理:一项随机对照试验,调查远程康复,旨在改善中风后下肢恢复 (TRAIL) 计划
- 批准号:
444017 - 财政年份:2021
- 资助金额:
$ 1.68万 - 项目类别:
Operating Grants
Branching Program Lower Bounds
分支程序下界
- 批准号:
RGPIN-2019-06288 - 财政年份:2021
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual
Advancing virtual care in stroke rehabilitation: A randomized controlled trial investigating the TeleRehabilitation with Aims to Improve Lower Extremity Recovery Post-Stroke (TRAIL) program
推进中风康复中的虚拟护理:一项随机对照试验,调查远程康复,旨在改善中风后下肢恢复 (TRAIL) 计划
- 批准号:
447801 - 财政年份:2021
- 资助金额:
$ 1.68万 - 项目类别:
Operating Grants
Self-Management for Amputee Rehabilitation using Technology (SMART) program: A peer supported mHealth approach for rehabilitation after lower limb amputation
使用技术进行截肢者康复自我管理 (SMART) 计划:同伴支持的移动医疗方法用于下肢截肢后的康复
- 批准号:
420590 - 财政年份:2020
- 资助金额:
$ 1.68万 - 项目类别:
Operating Grants
Branching Program Lower Bounds
分支程序下界
- 批准号:
RGPIN-2019-06288 - 财政年份:2020
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual