Branching Program Lower Bounds
分支程序下界
基本信息
- 批准号:RGPIN-2019-06288
- 负责人:
- 金额:$ 1.68万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2020
- 资助国家:加拿大
- 起止时间:2020-01-01 至 2021-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Two Topics:
I am proposing two quite independent topics: Branching program lower
bounds and machine learning. I have 30 years of experience and a great
deal of success in the first and the last six months I have taken a
few courses and read a few books in the second. In today's job market,
students tend to be drawn to Machine Learning rather than Logic (such
as Lower Bounds).There is also a large job market for HQP with Machine
Learning expertise. In addition to already existing expertise in AI
and Deep Learning, York U is starting a new program dedicated to
Machine Learning to address this need. My plan is to include training
students in this discipline in the future.
Lower Bounds in Branching Programs:
For both practical and theoretical reasons, we would like to know the
minimum amount of time (or space) needed to solve a given
computational problem on an input of a given size. An upper bound
provides an algorithm that achieves some time bound. A lower bound
proves that no algorithm correctly solves the problem faster no matter
how clever. Proving lower bounds on general models of computation
(eg. in JAVA or a Turing Machine) is beyond our reach. For this
reason, researchers often prove lower bounds on weaker modes of
computation. The most powerful model of computation measuring the
amount of space used by an algorithm is branching programs. We will
continue in this important area of fundamental research in order to
understand more about the limits of computation.
Machine Learning:
Computers can now drive cars and find cancer in x-rays. For better or
worse, this will change the world (and the job market). Strangely,
designing these algorithms is not done by telling the computer what to
do or even by understanding what the computer does. The computers
learn themselves from lots and lots of data and lots of trial and
error. This learning process is more analogous to how brains evolved
over billions of years of learning. The machine itself is a neural
network which models both the brain circuits, which are great for
computing. The only difference with neural networks is that what they
compute is determined by weights and small changes in these weights
give you small changes in the result of the computation. The process
for finding an optimal setting of these weights is analogous to
finding the bottom of a valley. If a machine can give the correct
answers on randomly chosen training data without simply memorizing,
then we can prove that with high probability the same machine will
also work well on never seen before instances.
两个主题:
我提出两个相当独立的主题:分支程序较低
bounds边界and machine机learning学习.我有30年的经验,
在第一个和最后六个月的成功交易,我已经采取了
在第二节课上读几门课和几本书。在今天的就业市场上,
学生倾向于被机器学习而不是逻辑(如
作为下限)。HQP也有很大的就业市场,
学习专业知识。除了现有的AI专业知识外,
和深度学习,约克U正在启动一个新的计划,致力于
机器学习可以满足这一需求。我的计划是包括训练
学生在未来的学科。
分支程序中的下限:
出于实际和理论原因,我们希望了解
解决给定问题所需的最少时间(或空间)
在给定大小的输入上的计算问题。一个上界
提供了一个算法,实现了一定的时间限制。一个下界
证明了没有任何算法能更快地正确解决问题,
真聪明。一般计算模型的下界证明
(例如:在Java或图灵机中)是我们无法达到的。为此
因此,研究人员经常证明较弱模式的下限,
计算最强大的计算模型,
一个算法使用的空间量是分支程序。我们将
继续在这一重要的基础研究领域,
更多地了解计算的极限。
机器学习:
计算机现在可以驾驶汽车,并通过x光发现癌症。不管是好是
更糟糕的是,这将改变世界(和就业市场)。奇怪的是,
设计这些算法并不是通过告诉计算机
做什么,甚至理解计算机做什么。计算机
从大量的数据和试验中学习,
错误.这种学习过程更类似于大脑的进化过程
在数十亿年的学习中。机器本身是一个神经
这两种大脑回路的模型网络,
计算的与神经网络的唯一区别是,
计算由权重和这些权重的微小变化决定
给你计算结果的微小变化。过程
找到这些权重的最佳设置类似于
寻找谷底如果一台机器能给出正确的
答案是随机选择的训练数据,而不是简单的记忆,
那么我们可以证明,同一台机器很有可能
在以前从未见过的情况下也能很好地工作。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Edmonds, Jeffrey其他文献
Edmonds, Jeffrey的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Edmonds, Jeffrey', 18)}}的其他基金
Branching Program Lower Bounds
分支程序下界
- 批准号:
RGPIN-2019-06288 - 财政年份:2022
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual
Branching Program Lower Bounds
分支程序下界
- 批准号:
RGPIN-2019-06288 - 财政年份:2021
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual
Branching Program Lower Bounds
分支程序下界
- 批准号:
RGPIN-2019-06288 - 财政年份:2019
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual
相似海外基金
Advancing Virtual Care in Stroke Rehabilitation through the TeleRehabilitation with Aims to Improve Lower extremity recovery post-stroke (TRAIL) program
通过远程康复推进中风康复中的虚拟护理,旨在改善中风后下肢恢复 (TRAIL) 计划
- 批准号:
495597 - 财政年份:2023
- 资助金额:
$ 1.68万 - 项目类别:
Branching Program Lower Bounds
分支程序下界
- 批准号:
RGPIN-2019-06288 - 财政年份:2022
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual
The development of a program to promote adherence to compression therapy in elderly patients with lower limb lymphedema.
制定一项计划,促进老年下肢淋巴水肿患者坚持加压治疗。
- 批准号:
22K10868 - 财政年份:2022
- 资助金额:
$ 1.68万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
The proposition of underwater exercise program to increase the respiratory muscle strength for the elderly with chronic pain in the lower limbs
老年人下肢慢性疼痛增加呼吸肌力的水下锻炼计划的提出
- 批准号:
22K17528 - 财政年份:2022
- 资助金额:
$ 1.68万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Inventing the new prevention program for anterior cruciate ligament using the fatigue index of lower limb
利用下肢疲劳指数发明前交叉韧带预防新方案
- 批准号:
21K17596 - 财政年份:2021
- 资助金额:
$ 1.68万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Advancing virtual care in stroke rehabilitation: A randomized controlled trial investigating the TeleRehabilitation with Aims to Improve Lower Extremity Recovery Post-Stroke (TRAIL) program
推进中风康复中的虚拟护理:一项随机对照试验,调查远程康复,旨在改善中风后下肢恢复 (TRAIL) 计划
- 批准号:
444017 - 财政年份:2021
- 资助金额:
$ 1.68万 - 项目类别:
Operating Grants
Branching Program Lower Bounds
分支程序下界
- 批准号:
RGPIN-2019-06288 - 财政年份:2021
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual
Advancing virtual care in stroke rehabilitation: A randomized controlled trial investigating the TeleRehabilitation with Aims to Improve Lower Extremity Recovery Post-Stroke (TRAIL) program
推进中风康复中的虚拟护理:一项随机对照试验,调查远程康复,旨在改善中风后下肢恢复 (TRAIL) 计划
- 批准号:
447801 - 财政年份:2021
- 资助金额:
$ 1.68万 - 项目类别:
Operating Grants
Self-Management for Amputee Rehabilitation using Technology (SMART) program: A peer supported mHealth approach for rehabilitation after lower limb amputation
使用技术进行截肢者康复自我管理 (SMART) 计划:同伴支持的移动医疗方法用于下肢截肢后的康复
- 批准号:
420590 - 财政年份:2020
- 资助金额:
$ 1.68万 - 项目类别:
Operating Grants
The Effects of a Gait Retraining Program on Internal Loading of the Lower Extremity during Running
步态再训练计划对跑步时下肢内部负荷的影响
- 批准号:
553787-2020 - 财政年份:2020
- 资助金额:
$ 1.68万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's