A Principled Approach to Reasoning about Discrete Dynamic Systems
离散动态系统推理的原则方法
基本信息
- 批准号:RGPIN-2015-05265
- 负责人:
- 金额:$ 1.75万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2019
- 资助国家:加拿大
- 起止时间:2019-01-01 至 2020-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Discrete dynamic phenomena are found in a broad range of contexts from discrete control in technical systems, to business processes, to atoms changing bonds in chemical reactions. Despite their diversity, these dynamic phenomena, usually conceptualized in terms of discrete events or actions, can be described using common underlying principles. These principles should be formally represented in a mathematical language that facilitates their analysis. This helps to design general solutions that can be subsequently deployed in a variety of applications. The proposed research program contributes to developing general principled representations for actions and their effects, and to demonstrating how these representations can be used to perform computationally tractable reasoning about the direct and indirect effects of actions. There are several conceptual and computational challenges that prevent the existing principled representations and reasoning mechanisms from making practical contributions to solving real-world problems. The objective of the proposed research program is to address some of these challenges. They include identifying the kinds of discrete dynamical systems that frequently occur in practical applications and investigating the use of principled logical representations to model these systems. The proposed research will focus on application of first order logic techniques to solve large scale planning problems. In particular, there is a need to explore how lifted first order logic representations can be used to solve deterministic planning problems when initial knowledge is incomplete. The proposed research will concentrate on the cases where computationally tractable solutions can be developed. Also, it will be explored how can we deal efficiently with actions that have indirect effects. Often, these effects are specified using causal rules; yet, there is little known about a boundary separating the case when reasoning about indirect effects is computationally tractable from the case when it is not. Moreover, the question how lifted first order planning can be done when actions have indirect effects has not yet been explored. The outcome of this research will be advancement of our knowledge and the development of techniques with broad applicability.
离散动力学现象存在于广泛的背景下,从技术系统中的离散控制到业务流程,再到化学反应中的原子改变键。尽管它们的多样性,这些动态现象,通常概念化的离散事件或行动,可以使用共同的基本原则来描述。这些原则应该用数学语言来正式表示,以便于分析。这有助于设计通用解决方案,随后可以在各种应用程序中部署。拟议的研究计划有助于制定一般原则的表示行动及其影响,并展示这些表示可以用来执行计算上易于处理的推理行动的直接和间接影响。有几个概念和计算的挑战,阻止现有的原则表示和推理机制,使实际的贡献,解决现实世界的问题。拟议的研究计划的目标是解决其中的一些挑战。它们包括识别在实际应用中经常出现的离散动力系统的种类,并研究使用原则性逻辑表示来建模这些系统。建议的研究将集中在应用一阶逻辑技术来解决大规模规划问题。特别是,有必要探讨如何解除一阶逻辑表示可以用来解决确定性规划问题时,初始知识是不完整的。拟议的研究将集中在计算易处理的解决方案可以开发的情况下。此外,还将探讨我们如何有效地处理具有间接影响的行动。通常情况下,这些影响是使用因果规则指定的;然而,当间接影响的推理在计算上易于处理时,与不容易处理时,关于将情况分开的边界知之甚少。此外,当行动具有间接影响时,如何进行解除一阶规划的问题尚未得到探讨。这项研究的结果将是我们知识的进步和具有广泛适用性的技术的发展。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Soutchanski, Mikhail其他文献
Soutchanski, Mikhail的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Soutchanski, Mikhail', 18)}}的其他基金
Principled Reasoning about Dynamical Systems
关于动力系统的原理推理
- 批准号:
RGPIN-2020-05031 - 财政年份:2022
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
Principled Reasoning about Dynamical Systems
关于动力系统的原理推理
- 批准号:
RGPIN-2020-05031 - 财政年份:2021
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
Principled Reasoning about Dynamical Systems
关于动力系统的原理推理
- 批准号:
RGPIN-2020-05031 - 财政年份:2020
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
A Principled Approach to Reasoning about Discrete Dynamic Systems
离散动态系统推理的原则方法
- 批准号:
RGPIN-2015-05265 - 财政年份:2018
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
A Principled Approach to Reasoning about Discrete Dynamic Systems
离散动态系统推理的原则方法
- 批准号:
RGPIN-2015-05265 - 财政年份:2017
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
A Principled Approach to Reasoning about Discrete Dynamic Systems
离散动态系统推理的原则方法
- 批准号:
RGPIN-2015-05265 - 财政年份:2016
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
A Principled Approach to Reasoning about Discrete Dynamic Systems
离散动态系统推理的原则方法
- 批准号:
RGPIN-2015-05265 - 财政年份:2015
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
Modular and taxonomic representations for tractable reasoning about actions
用于易于处理的动作推理的模块化和分类表示
- 批准号:
262120-2009 - 财政年份:2013
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
Modular and taxonomic representations for tractable reasoning about actions
用于易于处理的动作推理的模块化和分类表示
- 批准号:
262120-2009 - 财政年份:2012
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
Modular and taxonomic representations for tractable reasoning about actions
用于易于处理的动作推理的模块化和分类表示
- 批准号:
262120-2009 - 财政年份:2011
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
EnSite array指导下对Stepwise approach无效的慢性房颤机制及消融径线设计的实验研究
- 批准号:81070152
- 批准年份:2010
- 资助金额:10.0 万元
- 项目类别:面上项目
相似海外基金
CRII: SaTC: A Contextual Integrity Approach for Privacy Reasoning Regarding Performance Tracking Technologies in US College Athletics
CRII:SaTC:美国大学体育运动成绩跟踪技术隐私推理的上下文完整性方法
- 批准号:
2348294 - 财政年份:2024
- 资助金额:
$ 1.75万 - 项目类别:
Standard Grant
Designing an Equitable Approach to Multiplicative Reasoning through Dynamic Measurement for Area (DYME-A)
通过动态面积测量设计乘法推理的公平方法 (DYME-A)
- 批准号:
2321234 - 财政年份:2023
- 资助金额:
$ 1.75万 - 项目类别:
Standard Grant
EAGER: Robust Reasoning using a Geometric Approach to SAT and PSAT
EAGER:使用几何方法进行 SAT 和 PSAT 的稳健推理
- 批准号:
2152454 - 财政年份:2022
- 资助金额:
$ 1.75万 - 项目类别:
Standard Grant
Developing a knowledge inference and reasoning engine to extract meaningful insights from unstructured data using a novel neighbourhood graph approach
开发知识推理和推理引擎,使用新颖的邻域图方法从非结构化数据中提取有意义的见解
- 批准号:
10027139 - 财政年份:2022
- 资助金额:
$ 1.75万 - 项目类别:
Collaborative R&D
Spatio-temporal reasoning in mixed reality with a hybrid approach to support scalability and development of virtuality-reality continnum software
混合现实中的时空推理,采用混合方法来支持虚拟现实连续体软件的可扩展性和开发
- 批准号:
577627-2022 - 财政年份:2022
- 资助金额:
$ 1.75万 - 项目类别:
Alliance Grants
A Higher-Order Abstract Syntax Approach to Reasoning about Programs and Programming Languages
推理程序和编程语言的高阶抽象语法方法
- 批准号:
RGPIN-2015-04158 - 财政年份:2022
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
A Machine Learning Approach to Improve Students’ Scientific Reasoning and Writing
提高学生科学推理和写作能力的机器学习方法
- 批准号:
2020784 - 财政年份:2021
- 资助金额:
$ 1.75万 - 项目类别:
Standard Grant
A Higher-Order Abstract Syntax Approach to Reasoning about Programs and Programming Languages
推理程序和编程语言的高阶抽象语法方法
- 批准号:
RGPIN-2015-04158 - 财政年份:2021
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
Religious moral reasoning in the frame of dual process approach: Cultural differences in religious moral reasoning and thinking style.
双过程方法框架下的宗教道德推理:宗教道德推理和思维方式的文化差异
- 批准号:
21KK0042 - 财政年份:2021
- 资助金额:
$ 1.75万 - 项目类别:
Fund for the Promotion of Joint International Research (Fostering Joint International Research (B))
A Higher-Order Abstract Syntax Approach to Reasoning about Programs and Programming Languages
推理程序和编程语言的高阶抽象语法方法
- 批准号:
RGPIN-2015-04158 - 财政年份:2020
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual