EAGER: Robust Reasoning using a Geometric Approach to SAT and PSAT
EAGER:使用几何方法进行 SAT 和 PSAT 的稳健推理
基本信息
- 批准号:2152454
- 负责人:
- 金额:$ 9.92万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-04-01 至 2023-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The overarching goal of this EAGER project is to develop efficient and reliable methods for autonomous agents to produce plans for their safe operation in complex situations. For example, the development of large-scale unmanned aircraft system operation in urban areas for package delivery depends on such a capability. The fundamental issue is to determine if there is a viable solution in a specific situation; at the present time the complexity of this problem is too high to guarantee that a solution can be found. The team of researchers is developing a lower complexity approach with wide application in artificial intelligence. The project engages student researchers from underrepresented groups in computer science, and the research results are integrated into the classroom through courses like artificial intelligence, theory of computation, and autonomous agent systems.The project provides a new approach to agent planning at the cognitive level. The basic innovation is to convert the satisfiability problem into a geometric setting; in particular, the models of an n-variable logical sentence are viewed as the corners of an n-D hypercube, and interior points assign probabilities to the variables. Each conjunct in the conjunctive normal form sentence reduces the convex feasible solution region. Any non-empty feasible region indicates the existence of a solution to the probabilistic satisfiability problem and can also be probed with linear programming methods in polynomial time to seek an answer to the satisfiability problem. Particular approaches to be explored include: (1) modifications to the interior point method using barrier methods, (2) finding linear programming solutions in a non-Euclidean geometry, (3) applying random rotations to the feasible region to allow coordinate projects to determine if there is a solution, and (4) using Markov Chain Monte Carlo to get a point near a corner. Applications include probabilistic satisfiability inference, reinforcement policy optimization for autonomous agents, and probabilistic temporal logic.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
EAGER项目的首要目标是为自主代理开发高效可靠的方法,以制定在复杂情况下安全运行的计划。例如,在城市地区开发用于包裹递送的大规模无人驾驶飞机系统操作取决于这种能力。基本问题是确定在特定情况下是否存在可行的解决方案;目前这个问题的复杂性太高,无法保证可以找到解决方案。研究人员团队正在开发一种复杂性较低的方法,在人工智能中具有广泛的应用。该项目吸引了来自计算机科学领域代表性不足的学生研究人员,并将研究成果通过人工智能,计算理论和自主代理系统等课程融入课堂。该项目为认知层面的代理规划提供了一种新方法。基本的创新是将可满足性问题转化为几何设置;特别是,将n变量逻辑句子的模型视为n维超立方体的角,内部点为变量分配概率。合取范式语句中的每一个合取都缩小了凸可行解区域。任何非空的可行域表明概率可满足性问题的解的存在,并且也可以用线性规划方法在多项式时间内探索以寻求可满足性问题的答案。要探索的具体方法包括:(1)使用障碍方法对内点方法进行修改,(2)在非欧几里德几何中找到线性规划解,(3)对可行区域应用随机旋转以允许坐标投影来确定是否存在解,以及(4)使用马尔可夫链蒙特卡罗来获得角附近的点。应用包括概率可满足性推理、自主代理的强化策略优化和概率时态逻辑。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Thomas Henderson其他文献
3005 – MEGAKARYOCYTE-DERIVED PF4 SIGNALS VIA LDLR TO INHIBIT LEUKEMIA STEM CELL PROLIFERATION
- DOI:
10.1016/j.exphem.2023.06.112 - 发表时间:
2023-01-01 - 期刊:
- 影响因子:
- 作者:
Charles Ayemoba;Anna Di Staulo;Thomas Henderson;Sen Zhang;Alex Dittmar;Konstantinos Chronis;Sandra Pinho - 通讯作者:
Sandra Pinho
MORPHIAS: Molecular Phenotyping Image Analysis System
MORPHIAS:分子表型图像分析系统
- DOI:
- 发表时间:
2005 - 期刊:
- 影响因子:0
- 作者:
Thomas Henderson;R. Marc;Hao Wang - 通讯作者:
Hao Wang
3021 – PLATELET FACTOR 4 DISRUPTS LDLR SIGNALING TO INHIBIT ACUTE MYELOID LEUKEMIA STEM CELLS PROLIFERATION
- DOI:
10.1016/j.exphem.2024.104343 - 发表时间:
2024-08-01 - 期刊:
- 影响因子:
- 作者:
Charles Ayemoba;Sen Zhang;Anna Di Staulo;Thomas Henderson;Mary Menhart;Chandani Patel;Alex Dittmar;Constantinos Chronis;Sandra Pinho - 通讯作者:
Sandra Pinho
Thomas Henderson的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Thomas Henderson', 18)}}的其他基金
CCRI: ENS: Collaborative Research: ns-3 Network Simulation for Next-Generation Wireless
CCRI:ENS:协作研究:下一代无线的 ns-3 网络仿真
- 批准号:
2016379 - 财政年份:2020
- 资助金额:
$ 9.92万 - 项目类别:
Standard Grant
Developing an Industrial Maintenance Technician Pathway to an Advanced Technology Degree
开发工业维护技术人员获得高级技术学位的途径
- 批准号:
2000841 - 财政年份:2020
- 资助金额:
$ 9.92万 - 项目类别:
Standard Grant
EAGER: Innate Theories in Cognitive Robotics
EAGER:认知机器人的固有理论
- 批准号:
1021038 - 财政年份:2010
- 资助金额:
$ 9.92万 - 项目类别:
Standard Grant
CI-ADDO-EN: Frameworks for ns-3
CI-ADDO-EN:ns-3 框架
- 批准号:
0958139 - 财政年份:2010
- 资助金额:
$ 9.92万 - 项目类别:
Continuing Grant
CRI: Collaborative Proposal: Developing the Next-Generation Open-Source Network Simulator (ns-3)
CRI:协作提案:开发下一代开源网络模拟器 (ns-3)
- 批准号:
0551686 - 财政年份:2006
- 资助金额:
$ 9.92万 - 项目类别:
Continuing Grant
CISE Educational Innovation: Simulation Science and Education
CISE教育创新:模拟科学与教育
- 批准号:
9979838 - 财政年份:1999
- 资助金额:
$ 9.92万 - 项目类别:
Standard Grant
Acquisition of Computational Steering Instrumentation
收购计算转向仪器
- 批准号:
9512241 - 财政年份:1995
- 资助金额:
$ 9.92万 - 项目类别:
Standard Grant
Human/Computer Interface and Intelligent Robotic Control
人机界面与智能机器人控制
- 批准号:
9355041 - 财政年份:1993
- 资助金额:
$ 9.92万 - 项目类别:
Continuing Grant
相似国自然基金
供应链管理中的稳健型(Robust)策略分析和稳健型优化(Robust Optimization )方法研究
- 批准号:70601028
- 批准年份:2006
- 资助金额:7.0 万元
- 项目类别:青年科学基金项目
心理紧张和应力影响下Robust语音识别方法研究
- 批准号:60085001
- 批准年份:2000
- 资助金额:14.0 万元
- 项目类别:专项基金项目
ROBUST语音识别方法的研究
- 批准号:69075008
- 批准年份:1990
- 资助金额:3.5 万元
- 项目类别:面上项目
改进型ROBUST序贯检测技术
- 批准号:68671030
- 批准年份:1986
- 资助金额:2.0 万元
- 项目类别:面上项目
相似海外基金
CAREER: Robust, Fair, and Culturally Aware Commonsense Reasoning in Natural Language
职业:用自然语言进行稳健、公平和具有文化意识的常识推理
- 批准号:
2339746 - 财政年份:2024
- 资助金额:
$ 9.92万 - 项目类别:
Continuing Grant
CAREER: Flexible and Robust Reasoning in Natural Language
职业:灵活而稳健的自然语言推理
- 批准号:
2145280 - 财政年份:2022
- 资助金额:
$ 9.92万 - 项目类别:
Continuing Grant
NRI: Robust and Efficient Physics-based Learning and Reasoning in Degraded Environments
NRI:退化环境中稳健且高效的基于物理的学习和推理
- 批准号:
2132972 - 财政年份:2022
- 资助金额:
$ 9.92万 - 项目类别:
Standard Grant
Robust Learning and Reasoning for Complex Event Forecasting (EVENFLOW)
复杂事件预测的鲁棒学习和推理 (EVENFLOW)
- 批准号:
10042508 - 财政年份:2022
- 资助金额:
$ 9.92万 - 项目类别:
EU-Funded
Enabling rich, open-ended human-robot interaction through robust, advanced multimodal perceptual capabilities for high-level reasoning
通过强大、先进的多模态感知能力进行高级推理,实现丰富、开放式的人机交互
- 批准号:
RGPIN-2019-06047 - 财政年份:2022
- 资助金额:
$ 9.92万 - 项目类别:
Discovery Grants Program - Individual
R3AI: Shifting Paradigms for a Robust, Reasoning, and Responsible Artificial Intelligence and its Adoption
R3AI:稳健、推理和负责任的人工智能的转变范式及其采用
- 批准号:
CFREF-2022-00051 - 财政年份:2022
- 资助金额:
$ 9.92万 - 项目类别:
Canada First Research Excellence Fund
Enabling rich, open-ended human-robot interaction through robust, advanced multimodal perceptual capabilities for high-level reasoning
通过强大、先进的多模态感知能力进行高级推理,实现丰富、开放式的人机交互
- 批准号:
RGPIN-2019-06047 - 财政年份:2021
- 资助金额:
$ 9.92万 - 项目类别:
Discovery Grants Program - Individual
Enabling rich, open-ended human-robot interaction through robust, advanced multimodal perceptual capabilities for high-level reasoning
通过强大、先进的多模态感知能力进行高级推理,实现丰富、开放式的人机交互
- 批准号:
RGPIN-2019-06047 - 财政年份:2020
- 资助金额:
$ 9.92万 - 项目类别:
Discovery Grants Program - Individual
Enabling rich, open-ended human-robot interaction through robust, advanced multimodal perceptual capabilities for high-level reasoning
通过强大、先进的多模态感知能力进行高级推理,实现丰富、开放式的人机交互
- 批准号:
RGPIN-2019-06047 - 财政年份:2019
- 资助金额:
$ 9.92万 - 项目类别:
Discovery Grants Program - Individual
Enabling rich, open-ended human-robot interaction through robust, advanced multimodal perceptual capabilities for high-level reasoning
通过强大、先进的多模态感知能力进行高级推理,实现丰富、开放式的人机交互
- 批准号:
DGECR-2019-00142 - 财政年份:2019
- 资助金额:
$ 9.92万 - 项目类别:
Discovery Launch Supplement