Machine against machine: towards a better understanding of future cyber physical system security
机器对机器:更好地理解未来网络物理系统安全
基本信息
- 批准号:RGPIN-2019-07292
- 负责人:
- 金额:$ 2.04万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2019
- 资助国家:加拿大
- 起止时间:2019-01-01 至 2020-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project proposes to address the problem of protecting Cyber Physical Systems against sophisticated cyber attacks. Cyber physical systems (CPS) combine computer and communications technology with devices that sense and interact with the physical world in order to achieve a desired physical effect. They encompass a wide array of systems including Industrial Control Systems (ICS), critical infrastructure, autonomous vehicles, and consumer Internet of Things (IoT) devices. These systems are controlled by centralized or autonomous control algorithms that make the physical portions of the system behave in a desired manner. This proposal addresses the problem posed by the more sophisticated cyber attacks that target precisely these control algorithms by providing them with false information or compromising key components of the system. Since attacks will most likely be conducted by automated processes, the defense mechanisms deployed against them will also have to be autonomous. This is a very different situation from traditional Information Technology (IT) security where defensive processes are mostly human-driven, and required new theoretical frameworks to describe how these machine-against-machine situations will evolve over time, as both defensive and offensive processes optimize against each other and are simultaneously subject to evolutionary pressures due to significant changes in the operational environments of the cyber physical systems they are trying to defend and attack.******The goal of the proposed project is two-fold. First, we will attempt to build hybrid Artificial Intelligence (AI) based defensive mechanisms that combine the advantages of rule-based reasoning expert systems and more recent machine-learning approaches. To do so, we will use ontologies, a well-established knowledge representation tool, to construct high level conceptual models of the cyber and physical components of CPS inspired by the laws and rules of the physical world they are trying to control. To test and evaluate such defensive process we will expand on the experimental CPS emulation approach we have developed for a few specific application domains, such as electrical networks and Air Traffic Control systems, and apply to new domains, in order to validate the flexibility and general viability of the of use of ontologies. Second, we will attempt to develop a theoretical framework for describing the phenomena of co-optimisation and co-evolution in the machine-against-machine arms-race in the context of CPS, by applying concepts and mathematical constructs from Game Theory and mathematical optimization, so that we can better understand, model and predict the eventual outcome of such arms races.
该项目旨在解决保护网络物理系统免受复杂网络攻击的问题。 网络物理系统(CPS)将联合收割机计算机和通信技术与感测物理世界并与物理世界交互的设备相结合,以实现期望的物理效果。它们涵盖广泛的系统,包括工业控制系统(ICS),关键基础设施,自动驾驶汽车和消费物联网(IoT)设备。 这些系统由集中式或自主式控制算法控制,使系统的物理部分以期望的方式运行。 该提案解决了更复杂的网络攻击所带来的问题,这些网络攻击通过向这些控制算法提供虚假信息或损害系统的关键组件来精确地针对这些控制算法。由于攻击很可能是通过自动化流程进行的,因此针对它们部署的防御机制也必须是自主的。 这与传统的信息技术(IT)安全非常不同,在传统的IT安全中,防御过程主要是人为驱动的,并且需要新的理论框架来描述这些机器对抗机器的情况将如何随着时间的推移而演变,由于防御和进攻过程相互优化,并且由于赛博物理系统的作战环境发生重大变化,同时受到进化压力的影响他们在努力防守和进攻拟议项目的目标是双重的。 首先,我们将尝试建立混合人工智能(AI)为基础的防御机制,结合联合收割机的优势,基于规则的推理专家系统和最近的机器学习方法。 要做到这一点,我们将使用本体论,一个完善的知识表示工具,构建高层次的概念模型的CPS的网络和物理组件的启发,他们试图控制的物理世界的法律和规则。 为了测试和评估这样的防御过程中,我们将扩大实验CPS仿真方法,我们已经开发了一些特定的应用领域,如电力网络和空中交通管制系统,并适用于新的领域,以验证的灵活性和一般的生存能力的本体的使用。 其次,我们将尝试开发一个理论框架,用于描述CPS背景下机器对机器军备竞赛中的协同优化和协同进化现象,通过应用博弈论和数学优化的概念和数学结构,以便我们能够更好地理解,建模和预测此类军备竞赛的最终结果。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Fernandez, José其他文献
Fernandez, José的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Fernandez, José', 18)}}的其他基金
NSERC/Desjardins/National Bank Industrial Research Chair in Cybersecurity
NSERC/Desjardins/国家银行网络安全工业研究主席
- 批准号:
549058-2018 - 财政年份:2019
- 资助金额:
$ 2.04万 - 项目类别:
Industrial Research Chairs
相似海外基金
Robust Defences against Adversarial Machine Learning for UAV Systems
针对无人机系统对抗性机器学习的稳健防御
- 批准号:
LP230100083 - 财政年份:2024
- 资助金额:
$ 2.04万 - 项目类别:
Linkage Projects
Generative machine learning for narrow spectrum antibiotic discovery against Acinetobacter baumannii
生成机器学习用于发现针对鲍曼不动杆菌的窄谱抗生素
- 批准号:
477936 - 财政年份:2023
- 资助金额:
$ 2.04万 - 项目类别:
Operating Grants
CSAMGuard: Leveraging Advanced Machine Learning to Protect Against CSAM Link Obfuscation
CSAMGuard:利用先进的机器学习来防止 CSAM 链接混淆
- 批准号:
10073540 - 财政年份:2023
- 资助金额:
$ 2.04万 - 项目类别:
Collaborative R&D
Excellence in Research: A Hierarchical Machine Learning Approach for Securing of NoC-Based MPSoCs Against Thermal Attacks
卓越的研究:用于保护基于 NoC 的 MPSoC 免受热攻击的分层机器学习方法
- 批准号:
2302537 - 财政年份:2023
- 资助金额:
$ 2.04万 - 项目类别:
Standard Grant
Applying advanced molecular biology, metabolomics and image analysis using machine-learning technology to improve wheat resistance against Fusarium head blight
利用机器学习技术应用先进的分子生物学、代谢组学和图像分析来提高小麦对赤霉病的抗性
- 批准号:
570375-2021 - 财政年份:2022
- 资助金额:
$ 2.04万 - 项目类别:
Alliance Grants
Realization of chip authentication circuit using a leak monitor and elucidation of resistance mechanism against machine learning attacks
使用泄漏监视器实现芯片认证电路并阐明针对机器学习攻击的抵抗机制
- 批准号:
22K11959 - 财政年份:2022
- 资助金额:
$ 2.04万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Collaborative Research: SaTC: CORE: Small: Machine Learning for Cybersecurity: Robustness Against Concept Drift
协作研究:SaTC:核心:小型:网络安全机器学习:针对概念漂移的稳健性
- 批准号:
2154873 - 财政年份:2022
- 资助金额:
$ 2.04万 - 项目类别:
Continuing Grant
Collaborative Research: SaTC: CORE: Small: Machine Learning for Cybersecurity: Robustness Against Concept Drift
协作研究:SaTC:核心:小型:网络安全机器学习:针对概念漂移的稳健性
- 批准号:
2154874 - 财政年份:2022
- 资助金额:
$ 2.04万 - 项目类别:
Continuing Grant
EXCELLENCE in RESEARCH: SECURING MACHINE LEARNING AGAINST ADVERSARIAL ATTACKS FOR CONNECTED AND AUTONOMOUS VEHICLES
卓越的研究:保护联网和自动驾驶车辆的机器学习免受对抗性攻击
- 批准号:
2200457 - 财政年份:2022
- 资助金额:
$ 2.04万 - 项目类别:
Standard Grant
Machine against machine: towards a better understanding of future cyber physical system security
机器对机器:更好地理解未来网络物理系统安全
- 批准号:
RGPIN-2019-07292 - 财政年份:2021
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual