Adaptive high-fidelity computational fluid dynamics
自适应高保真计算流体动力学
基本信息
- 批准号:RGPIN-2017-06740
- 负责人:
- 金额:$ 2.19万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2019
- 资助国家:加拿大
- 起止时间:2019-01-01 至 2020-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
With rapid and sustained advances in computing hardware and algorithms, simulation-based analysis has become an indispensable tool in engineering practice. In aerospace engineering, the need to design and analyze complex aerospace systems has resulted in the development of novel numerical methods for partial differential equations (PDEs) with applications including aerodynamics. Continued advances in simulation capabilities are crucial to design next-generation engineering systems that are more efficient, safer, more sustainable, and more economical.******My research program focuses on the development of automated solution technologies for PDEs; my vision is to free users from the task of handling numerical issues and to make the vast potential of simulation-based analysis accessible to broader groups of researchers and engineers in industry, government, and academia. The key to realize automated simulations is adaptive numerical computing, which optimally allocates available computing resources to provide an accurate answer to engineers' questions in a reliable and efficient manner. While demonstrating significant potential in academic applications, the existing adaptive finite element and model reduction methods lack robustness to solve complex industrial problems in a fully automatic manner. In three tightly coupled projects, the program will develop more robust flow solvers, error estimates, adaptation mechanics, and model reduction strategies. The program seeks advances in fundamental mathematical analysis as well as demonstration of algorithms for real-world problems. On one hand, careful mathematical analysis, with provable results, is needed to formally characterize the performance of methods. On the other hand, large-scale numerical demonstrations are essential to assess the practical performance of methods for real-world industrial applications and to facilitate technology transfer.******The target application of the proposed program is turbulent aerodynamic flows over complex three-dimensional geometries, a class of problems with a direct impact in aerospace industries. In addition, the adaptive techniques developed will apply to a wide range of engineering problems outside of aerodynamics, including reacting flows, solid mechanics, acoustics, electromagnetics, as well as multiphysics problems. The program will also train students in the field of computational science and engineering, a rapidly growing field that combines sciences, engineering, mathematics, and computer science to address engineering challenges in the 21st century.
随着计算硬件和算法的快速和持续发展,基于模拟的分析已经成为工程实践中不可或缺的工具。在航天工程中,设计和分析复杂的航天系统的需要导致了偏微分方程组(PDE)的新的数值方法的发展,其应用包括空气动力学。模拟能力的持续进步对于设计更高效、更安全、更可持续和更经济的下一代工程系统至关重要。*我的研究计划专注于为PDE开发自动化解决方案技术;我的愿景是将用户从处理数值问题的任务中解放出来,并使工业、政府和学术界更广泛的研究人员和工程师群体能够访问基于模拟的分析的巨大潜力。实现自动化仿真的关键是自适应数值计算,它可以优化分配可用的计算资源,以可靠和高效的方式为工程师的问题提供准确的答案。尽管现有的自适应有限元和模型降阶方法在学术应用上显示出巨大的潜力,但它们缺乏以全自动方式解决复杂工业问题的稳健性。在三个紧密耦合的项目中,该计划将开发更健壮的流动解算器、误差估计、适应机制和模型缩减策略。该计划寻求在基础数学分析方面的进步,以及现实世界问题的算法演示。一方面,需要仔细的数学分析,并有可证明的结果,以正式地表征方法的性能。另一方面,大规模的数值演示对于评估方法在实际工业应用中的实际性能和促进技术转移是必不可少的。*拟议程序的目标应用是复杂三维几何形状上的湍流空气动力流动,这是一类在航空航天工业中具有直接影响的问题。此外,开发的自适应技术将应用于空气动力学以外的广泛工程问题,包括反应流、固体力学、声学、电磁学以及多物理问题。该计划还将培训学生在计算科学和工程领域,这是一个快速增长的领域,结合科学,工程,数学和计算机科学,以应对21世纪的工程挑战。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yano, Masayuki其他文献
A parameterized-background data-weak approach to variational data assimilation: formulation, analysis, and application to acoustics
- DOI:
10.1002/nme.4747 - 发表时间:
2015-05-04 - 期刊:
- 影响因子:2.9
- 作者:
Maday, Yvon;Patera, Anthony T.;Yano, Masayuki - 通讯作者:
Yano, Masayuki
A SPACE-TIME PETROV-GALERKIN CERTIFIED REDUCED BASIS METHOD: APPLICATION TO THE BOUSSINESQ EQUATIONS
- DOI:
10.1137/120903300 - 发表时间:
2014-01-01 - 期刊:
- 影响因子:3.1
- 作者:
Yano, Masayuki - 通讯作者:
Yano, Masayuki
Assessment of the mechanical properties of the nucleus inside a spherical endothelial cell based on microtensile testing
- DOI:
10.2140/jomms.2007.2.1087 - 发表时间:
2007-06-01 - 期刊:
- 影响因子:0.9
- 作者:
Deguchi, Shinji;Yano, Masayuki;Tsujioka, Katsuhiko - 通讯作者:
Tsujioka, Katsuhiko
Yano, Masayuki的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yano, Masayuki', 18)}}的其他基金
Adaptive high-fidelity computational fluid dynamics
自适应高保真计算流体动力学
- 批准号:
RGPIN-2017-06740 - 财政年份:2022
- 资助金额:
$ 2.19万 - 项目类别:
Discovery Grants Program - Individual
Adaptive high-fidelity computational fluid dynamics
自适应高保真计算流体动力学
- 批准号:
RGPIN-2017-06740 - 财政年份:2021
- 资助金额:
$ 2.19万 - 项目类别:
Discovery Grants Program - Individual
Adaptive high-fidelity computational fluid dynamics
自适应高保真计算流体动力学
- 批准号:
RGPIN-2017-06740 - 财政年份:2020
- 资助金额:
$ 2.19万 - 项目类别:
Discovery Grants Program - Individual
Adaptive high-fidelity computational fluid dynamics
自适应高保真计算流体动力学
- 批准号:
507983-2017 - 财政年份:2019
- 资助金额:
$ 2.19万 - 项目类别:
Discovery Grants Program - Accelerator Supplements
Adaptive high-fidelity computational fluid dynamics
自适应高保真计算流体动力学
- 批准号:
507983-2017 - 财政年份:2018
- 资助金额:
$ 2.19万 - 项目类别:
Discovery Grants Program - Accelerator Supplements
Adaptive high-fidelity computational fluid dynamics
自适应高保真计算流体动力学
- 批准号:
RGPIN-2017-06740 - 财政年份:2018
- 资助金额:
$ 2.19万 - 项目类别:
Discovery Grants Program - Individual
Adaptive high-fidelity computational fluid dynamics
自适应高保真计算流体动力学
- 批准号:
507983-2017 - 财政年份:2017
- 资助金额:
$ 2.19万 - 项目类别:
Discovery Grants Program - Accelerator Supplements
Adaptive high-fidelity computational fluid dynamics
自适应高保真计算流体动力学
- 批准号:
RGPIN-2017-06740 - 财政年份:2017
- 资助金额:
$ 2.19万 - 项目类别:
Discovery Grants Program - Individual
相似海外基金
CRII: OAC: A Multi-fidelity Computational Framework for Discovering Governing Equations Under Uncertainty
CRII:OAC:用于发现不确定性下控制方程的多保真度计算框架
- 批准号:
2348495 - 财政年份:2024
- 资助金额:
$ 2.19万 - 项目类别:
Standard Grant
Collaborative Research: Frameworks: A multi-fidelity computational framework for vascular mechanobiology in SimVascular
合作研究:框架:SimVasulous 中血管力学生物学的多保真度计算框架
- 批准号:
2310910 - 财政年份:2023
- 资助金额:
$ 2.19万 - 项目类别:
Standard Grant
Collaborative Research: Frameworks: A multi-fidelity computational framework for vascular mechanobiology in SimVascular
合作研究:框架:SimVasulous 中血管力学生物学的多保真度计算框架
- 批准号:
2310909 - 财政年份:2023
- 资助金额:
$ 2.19万 - 项目类别:
Standard Grant
Ultra-High Fidelity Single-Molecule Profiling of Mosaic Double- and Single-Strand DNA Mutations and Damage
镶嵌双链和单链 DNA 突变和损伤的超高保真度单分子分析
- 批准号:
10657882 - 财政年份:2023
- 资助金额:
$ 2.19万 - 项目类别:
High fidelity computational approaches to exploit new structures of cardiac ion channels
高保真计算方法开发心脏离子通道的新结构
- 批准号:
NC/W001500/1 - 财政年份:2022
- 资助金额:
$ 2.19万 - 项目类别:
Training Grant
Adaptive high-fidelity computational fluid dynamics
自适应高保真计算流体动力学
- 批准号:
RGPIN-2017-06740 - 财政年份:2022
- 资助金额:
$ 2.19万 - 项目类别:
Discovery Grants Program - Individual
Street Experiences, Affect, and Coping: Harnessing Computational Models for the Development of a Cellphone-Based Intervention to Prevent Drug Use among Youth Experiencing Homelessness
街头经历、影响和应对:利用计算模型开发基于手机的干预措施,以防止无家可归的青少年吸毒
- 批准号:
10684264 - 财政年份:2022
- 资助金额:
$ 2.19万 - 项目类别:
Development and application of a high-fidelity computational model of diabetic retinopathy hemodynamics: Coupling single-cell biophysics with retinal vascular network topology and complexity
糖尿病视网膜病变血流动力学高保真计算模型的开发和应用:将单细胞生物物理学与视网膜血管网络拓扑和复杂性耦合
- 批准号:
10688753 - 财政年份:2021
- 资助金额:
$ 2.19万 - 项目类别:
Development and application of a high-fidelity computational model of diabetic retinopathy hemodynamics: Coupling single-cell biophysics with retinal vascular network topology and complexity
糖尿病视网膜病变血流动力学高保真计算模型的开发和应用:将单细胞生物物理学与视网膜血管网络拓扑和复杂性耦合
- 批准号:
10279068 - 财政年份:2021
- 资助金额:
$ 2.19万 - 项目类别:
Adaptive high-fidelity computational fluid dynamics
自适应高保真计算流体动力学
- 批准号:
RGPIN-2017-06740 - 财政年份:2021
- 资助金额:
$ 2.19万 - 项目类别:
Discovery Grants Program - Individual