Deep Convolutional Neural Networks for Identification, Tracking, and Classification of Transport Vehicles using Multiple-view Imaging Systems
使用多视图成像系统的深度卷积神经网络对运输车辆进行识别、跟踪和分类
基本信息
- 批准号:536767-2018
- 负责人:
- 金额:$ 2.51万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Collaborative Research and Development Grants
- 财政年份:2019
- 资助国家:加拿大
- 起止时间:2019-01-01 至 2020-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project revolves around the concept of Identification, Tracking, and Classification (ITC) of transport vehicles passing through inspection stations using imaging sensors. Multiple-view machine-learning-based algorithms will be developed that is robust to partial occlusion in the imaging sensors and to the light scatter due to differential illumination and weather conditions for the first time.A close collaboration between IRD and the University of Regina (UofR) will generate a unique partnership between industry and academia that can pave the way towards training highly-qualified personnel at both institutes. Furthermore, the transport vehicle inspection facilities, such as the one in the Global Transportation Hub (GTH) will be used as a living lab located at close proximity to the UofR, where our research results and findings can be tested and utilized. This project has the potential to lead to developing an emerging engineering discipline in intelligent transportation in Saskatchewan for the first time.
该项目围绕着使用成像传感器对通过检查站的运输车辆进行识别、跟踪和分类(ITC)的概念。 将开发基于多视图机器学习的算法,该算法对成像传感器中的部分遮挡以及由于不同照明和天气条件引起的光散射具有鲁棒性。IRD与里贾纳大学(UofR)之间的密切合作将在工业界和学术界之间建立独特的伙伴关系,为两个研究所培养高素质人才铺平道路。 此外,运输车辆检测设施,如全球运输中心(GTH)的检测设施,将被用作靠近UofR的生活实验室,我们的研究成果和发现可以在那里得到测试和利用。该项目有可能导致在萨斯喀彻温省首次开发一个新兴的智能交通工程学科。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mehrandezh, Mehran其他文献
A Cascaded and Adaptive Visual Predictive Control Approach for Real-Time Dynamic Visual Servoing
- DOI:
10.3390/drones6050127 - 发表时间:
2022-05-01 - 期刊:
- 影响因子:4.8
- 作者:
Sajjadi, Sina;Mehrandezh, Mehran;Janabi-Sharifi, Farrokh - 通讯作者:
Janabi-Sharifi, Farrokh
OPTIMAL SPATIAL RESOLUTION OF OMNIDIRECTIONAL IMAGING SYSTEMS FOR PIPE INSPECTION APPLICATIONS
- DOI:
10.1080/15599612.2015.1059536 - 发表时间:
2015-10-02 - 期刊:
- 影响因子:5.5
- 作者:
Tezerjani, Abbasali Dehghan;Mehrandezh, Mehran;Paranjape, Raman - 通讯作者:
Paranjape, Raman
Mehrandezh, Mehran的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mehrandezh, Mehran', 18)}}的其他基金
Photometry and radiometry-based metrology for design and development of high-precision fully-autonomous robotic inspection systems
基于光度测量和辐射测量的计量,用于设计和开发高精度全自动机器人检测系统
- 批准号:
RGPIN-2017-06294 - 财政年份:2022
- 资助金额:
$ 2.51万 - 项目类别:
Discovery Grants Program - Individual
Photometry and radiometry-based metrology for design and development of high-precision fully-autonomous robotic inspection systems
基于光度测量和辐射测量的计量,用于设计和开发高精度全自动机器人检测系统
- 批准号:
RGPIN-2017-06294 - 财政年份:2021
- 资助金额:
$ 2.51万 - 项目类别:
Discovery Grants Program - Individual
Automated Assembly of Seeding Toolbars at Vaderstad
Vaderstad 播种工具栏的自动组装
- 批准号:
543925-2019 - 财政年份:2021
- 资助金额:
$ 2.51万 - 项目类别:
Collaborative Research and Development Grants
Photometry and radiometry-based metrology for design and development of high-precision fully-autonomous robotic inspection systems
基于光度测量和辐射测量的计量,用于设计和开发高精度全自动机器人检测系统
- 批准号:
RGPIN-2017-06294 - 财政年份:2020
- 资助金额:
$ 2.51万 - 项目类别:
Discovery Grants Program - Individual
Automated Assembly of Seeding Toolbars at Vaderstad
Vaderstad 播种工具栏的自动组装
- 批准号:
543925-2019 - 财政年份:2020
- 资助金额:
$ 2.51万 - 项目类别:
Collaborative Research and Development Grants
Deep Convolutional Neural Networks for Identification, Tracking, and Classification of Transport Vehicles using Multiple-view Imaging Systems
使用多视图成像系统的深度卷积神经网络对运输车辆进行识别、跟踪和分类
- 批准号:
536767-2018 - 财政年份:2020
- 资助金额:
$ 2.51万 - 项目类别:
Collaborative Research and Development Grants
Automated Assembly of Seeding Toolbars at Vaderstad
Vaderstad 播种工具栏的自动组装
- 批准号:
543925-2019 - 财政年份:2019
- 资助金额:
$ 2.51万 - 项目类别:
Collaborative Research and Development Grants
Photometry and radiometry-based metrology for design and development of high-precision fully-autonomous robotic inspection systems
基于光度测量和辐射测量的计量,用于设计和开发高精度全自动机器人检测系统
- 批准号:
RGPIN-2017-06294 - 财政年份:2019
- 资助金额:
$ 2.51万 - 项目类别:
Discovery Grants Program - Individual
Tempro-spatial measurement of wind speed/direction using rotary-wing UAVs
使用旋翼无人机进行风速/风向的时空测量
- 批准号:
531170-2018 - 财政年份:2018
- 资助金额:
$ 2.51万 - 项目类别:
Engage Grants Program
Photometry and radiometry-based metrology for design and development of high-precision fully-autonomous robotic inspection systems
基于光度测量和辐射测量的计量,用于设计和开发高精度全自动机器人检测系统
- 批准号:
RGPIN-2017-06294 - 财政年份:2018
- 资助金额:
$ 2.51万 - 项目类别:
Discovery Grants Program - Individual
相似海外基金
Developing distributed learning algorithms for convolutional neural networks: a novel method for training deep learning models without sharing and collecting data
开发卷积神经网络的分布式学习算法:一种无需共享和收集数据即可训练深度学习模型的新方法
- 批准号:
546140-2020 - 财政年份:2022
- 资助金额:
$ 2.51万 - 项目类别:
Postdoctoral Fellowships
Real-time Optimization using ANN/Deep Convolutional Neural Network for Lowbush Blueberry Harvesting
使用 ANN/深度卷积神经网络实时优化低丛蓝莓采摘
- 批准号:
RGPIN-2017-05815 - 财政年份:2022
- 资助金额:
$ 2.51万 - 项目类别:
Discovery Grants Program - Individual
Deep Convolutional Neural Network Pipeline and Software Platform to Convert Pulmonary Computed Tomography to Magnetic Resonance Imaging
将肺计算机断层扫描转换为磁共振成像的深度卷积神经网络管道和软件平台
- 批准号:
545503-2020 - 财政年份:2021
- 资助金额:
$ 2.51万 - 项目类别:
Postdoctoral Fellowships
Developing distributed learning algorithms for convolutional neural networks: a novel method for training deep learning models without sharing and collecting data
开发卷积神经网络的分布式学习算法:一种无需共享和收集数据即可训练深度学习模型的新方法
- 批准号:
546140-2020 - 财政年份:2021
- 资助金额:
$ 2.51万 - 项目类别:
Postdoctoral Fellowships
Concurrent multi-task learning-based deep convolutional neural networks for high resolution assessment of in-vivo cardiac microstructure
基于并行多任务学习的深度卷积神经网络,用于体内心脏微观结构的高分辨率评估
- 批准号:
2605686 - 财政年份:2021
- 资助金额:
$ 2.51万 - 项目类别:
Studentship
Real-time Optimization using ANN/Deep Convolutional Neural Network for Lowbush Blueberry Harvesting
使用 ANN/深度卷积神经网络实时优化低丛蓝莓采摘
- 批准号:
RGPIN-2017-05815 - 财政年份:2021
- 资助金额:
$ 2.51万 - 项目类别:
Discovery Grants Program - Individual
CAREER: Seeing Through Atmospheric Turbulence: Image Restoration and Understanding using Deep Convolutional Neural Networks
职业:透视大气湍流:使用深度卷积神经网络进行图像恢复和理解
- 批准号:
2045489 - 财政年份:2021
- 资助金额:
$ 2.51万 - 项目类别:
Continuing Grant
Deep Convolutional Neural Network Pipeline and Software Platform to Convert Pulmonary Computed Tomography to Magnetic Resonance Imaging
将肺计算机断层扫描转换为磁共振成像的深度卷积神经网络管道和软件平台
- 批准号:
545503-2020 - 财政年份:2020
- 资助金额:
$ 2.51万 - 项目类别:
Postdoctoral Fellowships
Development of Deep Convolutional Neural Network for Computer-Aided Diagnosis of Ischemic Heart Disease
缺血性心脏病计算机辅助诊断深度卷积神经网络的发展
- 批准号:
20K20233 - 财政年份:2020
- 资助金额:
$ 2.51万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Deep Convolutional Neural Networks for Identification, Tracking, and Classification of Transport Vehicles using Multiple-view Imaging Systems
使用多视图成像系统的深度卷积神经网络对运输车辆进行识别、跟踪和分类
- 批准号:
536767-2018 - 财政年份:2020
- 资助金额:
$ 2.51万 - 项目类别:
Collaborative Research and Development Grants