Research Challenges in Privacy-Aware Mobility Data Analysis and in Text Mining with Enriched Data

隐私意识移动数据分析和丰富数据文本挖掘的研究挑战

基本信息

  • 批准号:
    RGPIN-2016-03913
  • 负责人:
  • 金额:
    $ 2.77万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2019
  • 资助国家:
    加拿大
  • 起止时间:
    2019-01-01 至 2020-12-31
  • 项目状态:
    已结题

项目摘要

I propose a research program combining two areas in which I have worked in the last years, i.e. Mobility Data Analysis and Privacy-Preservation Techniques. Mobility data is the data created by moving devices (e.g. cellphones, GPS, wifi) registering their presence, timestamp (and, for GPS enabled devices, their position) with antennas, receivers and routers. Mobility data is ubiquitous and its volume is growing constantly. Its importance for understanding human and animal behaviour is crucial, and therefore there is general interest in collecting and exploring this type of data for a vast range of applications, ranging from traffic and transportation, ecology, epidemiology, to safety and security. The fundamental mobility data concept is a trajectory - a sequence of points where each point consists of a geospatial coordinate set and a time stamp.**The main goal of the proposed research program is to develop Machine Learning methods for the analysis of human mobility at both coarse and fine granularity, making them privacy-preserving whenever this data represents - or can identify - individuals, or breach other confidential information. While it is well known that human mobility data presents enormous privacy challenges, I show that the same applies for ship movements, particularly for smaller recreational and fishing vessels. I list specific research tasks that collectively will provide tools for addressing mobility data in a private manner. These tasks also make realistic and interesting topics of graduate theses for students working with me. Those tasks are: dividing trajectories into semantically meaningful parts (segmentation), prediction of the next point in a trajectory (next move prediction), segment classification, clustering of trajectories and use of clustering as a privacy-oriented data representation, detection of anomalous trajectories, linking and integration of extraneous data with mobility data, and privacy models conducive to the special characteristics of mobility data.**Exploring partnerships of my labs with companies that collect and own large mobility datasets, I will focus on two main types of data: ships tracks on world's oceans available through a GPS-like AIS (Automatic Identification System) platform, and people's traces left with wifi hotspots in an urban environment. I argue that this research will have significant impact. For instance, clustering urban mobility data by speed would identify spatio-temporal cycling patterns and inform the city about the times and routes with the highest likelihood of collisions between cyclists and motorists, enabling solutions (e.g. cyclist-only lanes) at specific times of the day and the year.
我提出了一个研究计划,结合我过去几年工作的两个领域,即移动数据分析和隐私保护技术。移动数据是移动设备(如手机、GPS、wifi)通过天线、接收器和路由器记录其存在、时间戳(以及启用GPS的设备的位置)所产生的数据。移动数据无处不在,其数量也在不断增长。它对理解人类和动物行为的重要性是至关重要的,因此,人们普遍对收集和探索这类数据的广泛应用感兴趣,范围从交通和运输、生态学、流行病学到安全和安保。基本的移动数据概念是一个轨迹——一个点序列,其中每个点由一个地理空间坐标集和一个时间戳组成。**拟议研究计划的主要目标是开发用于粗粒度和细粒度分析人类移动性的机器学习方法,使其在这些数据代表或可以识别个人或泄露其他机密信息时保持隐私。虽然众所周知,人类移动数据带来了巨大的隐私挑战,但我认为船舶移动也是如此,尤其是小型娱乐船只和渔船。我列出了具体的研究任务,这些任务将共同为以私人方式处理移动数据提供工具。这些任务也使与我一起工作的学生的毕业论文成为现实和有趣的主题。这些任务是:将轨迹划分为语义上有意义的部分(分割),预测轨迹中的下一个点(下一步移动预测),分段分类,轨迹聚类和使用聚类作为面向隐私的数据表示,异常轨迹检测,外部数据与移动数据的链接和集成,以及有利于移动数据特殊特征的隐私模型。**探索我的实验室与收集和拥有大型移动数据集的公司的合作伙伴关系,我将重点关注两种主要类型的数据:通过类似gps的AIS(自动识别系统)平台提供的世界海洋上的船舶轨迹,以及城市环境中wifi热点留下的人的痕迹。我认为这项研究将产生重大影响。例如,按速度对城市交通数据进行聚类,可以识别出骑车的时空模式,并告知城市骑车者和驾车者之间发生碰撞的可能性最高的时间和路线,从而在一天和一年中的特定时间提供解决方案(例如,自行车专用道)。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Matwin, Stan其他文献

deepBioWSD: effective deep neural word sense disambiguation of biomedical text data
Unsupervised named-entity recognition: Generating gazetteers and resolving ambiguity
Learning and evaluation in the presence of class hierarchies: Application to text categorization
A new algorithm for reducing the workload of experts in performing systematic reviews
A novel machine learning approach to analyzing geospatial vessel patterns using AIS data
  • DOI:
    10.1080/15481603.2022.2118437
  • 发表时间:
    2022-12-31
  • 期刊:
  • 影响因子:
    6.7
  • 作者:
    Ferreira, Martha Dais;Campbell, Jessica N. A.;Matwin, Stan
  • 通讯作者:
    Matwin, Stan

Matwin, Stan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Matwin, Stan', 18)}}的其他基金

Interpretability for Machine Learning
机器学习的可解释性
  • 批准号:
    CRC-2019-00383
  • 财政年份:
    2022
  • 资助金额:
    $ 2.77万
  • 项目类别:
    Canada Research Chairs
Causality in Machine Learning
机器学习中的因果关系
  • 批准号:
    RGPIN-2022-03667
  • 财政年份:
    2022
  • 资助金额:
    $ 2.77万
  • 项目类别:
    Discovery Grants Program - Individual
Automated Monitoring of the Naval Information Space (AMNIS)
海军信息空间 (AMNIS) 自动监控
  • 批准号:
    550722-2020
  • 财政年份:
    2021
  • 资助金额:
    $ 2.77万
  • 项目类别:
    Alliance Grants
Research Challenges in Privacy-Aware Mobility Data Analysis and in Text Mining with Enriched Data
隐私意识移动数据分析和丰富数据文本挖掘的研究挑战
  • 批准号:
    RGPIN-2016-03913
  • 财政年份:
    2021
  • 资助金额:
    $ 2.77万
  • 项目类别:
    Discovery Grants Program - Individual
Interpretability For Machine Learning
机器学习的可解释性
  • 批准号:
    CRC-2019-00383
  • 财政年份:
    2021
  • 资助金额:
    $ 2.77万
  • 项目类别:
    Canada Research Chairs
Interpretability for Machine Learning
机器学习的可解释性
  • 批准号:
    CRC-2019-00383
  • 财政年份:
    2020
  • 资助金额:
    $ 2.77万
  • 项目类别:
    Canada Research Chairs
Research Challenges in Privacy-Aware Mobility Data Analysis and in Text Mining with Enriched Data
隐私意识移动数据分析和丰富数据文本挖掘的研究挑战
  • 批准号:
    RGPIN-2016-03913
  • 财政年份:
    2020
  • 资助金额:
    $ 2.77万
  • 项目类别:
    Discovery Grants Program - Individual
Automated Monitoring of the Naval Information Space (AMNIS)
海军信息空间 (AMNIS) 自动监控
  • 批准号:
    550722-2020
  • 财政年份:
    2020
  • 资助金额:
    $ 2.77万
  • 项目类别:
    Alliance Grants
Visual Text Analytics
视觉文本分析
  • 批准号:
    1000228345-2012
  • 财政年份:
    2019
  • 资助金额:
    $ 2.77万
  • 项目类别:
    Canada Research Chairs
Interpretability for Machine Learning
机器学习的可解释性
  • 批准号:
    CRC-2019-00383
  • 财政年份:
    2019
  • 资助金额:
    $ 2.77万
  • 项目类别:
    Canada Research Chairs

相似国自然基金

Supply Chain Collaboration in addressing Grand Challenges: Socio-Technical Perspective
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国青年学者研究基金项目

相似海外基金

CAREER: Towards Fairness in the Real World under Generalization, Privacy and Robustness Challenges
职业:在泛化、隐私和稳健性挑战下实现现实世界的公平
  • 批准号:
    2339198
  • 财政年份:
    2024
  • 资助金额:
    $ 2.77万
  • 项目类别:
    Continuing Grant
Tools to Address the Challenges of Preserving Privacy in Sharing and Analysis of Biomedical Data
应对生物医学数据共享和分析中保护隐私挑战的工具
  • 批准号:
    10708820
  • 财政年份:
    2022
  • 资助金额:
    $ 2.77万
  • 项目类别:
Research Challenges in Privacy-Aware Mobility Data Analysis and in Text Mining with Enriched Data
隐私意识移动数据分析和丰富数据文本挖掘的研究挑战
  • 批准号:
    RGPIN-2016-03913
  • 财政年份:
    2021
  • 资助金额:
    $ 2.77万
  • 项目类别:
    Discovery Grants Program - Individual
Privacy Challenges of Genomic Data-Sharing Beacons and Solutions
基因组数据共享信标和解决方案的隐私挑战
  • 批准号:
    10223439
  • 财政年份:
    2020
  • 资助金额:
    $ 2.77万
  • 项目类别:
Research Challenges in Privacy-Aware Mobility Data Analysis and in Text Mining with Enriched Data
隐私意识移动数据分析和丰富数据文本挖掘的研究挑战
  • 批准号:
    RGPIN-2016-03913
  • 财政年份:
    2020
  • 资助金额:
    $ 2.77万
  • 项目类别:
    Discovery Grants Program - Individual
Privacy Challenges of Genomic Data-Sharing Beacons and Solutions
基因组数据共享信标和解决方案的隐私挑战
  • 批准号:
    10443776
  • 财政年份:
    2020
  • 资助金额:
    $ 2.77万
  • 项目类别:
Privacy Challenges of Genomic Data-Sharing Beacons and Solutions
基因组数据共享信标和解决方案的隐私挑战
  • 批准号:
    10674031
  • 财政年份:
    2020
  • 资助金额:
    $ 2.77万
  • 项目类别:
Privacy Challenges of Genomic Data-Sharing Beacons and Solutions
基因组数据共享信标和解决方案的隐私挑战
  • 批准号:
    10031275
  • 财政年份:
    2020
  • 资助金额:
    $ 2.77万
  • 项目类别:
Student Travel Grants for the Second International Workshop on The Bright and Dark Side of Computer Vision: Challenges and Opportunities for Privacy and Security
第二届计算机视觉的光明与黑暗的一面国际研讨会的学生旅费资助:隐私和安全的挑战与机遇
  • 批准号:
    1834899
  • 财政年份:
    2018
  • 资助金额:
    $ 2.77万
  • 项目类别:
    Standard Grant
Research Challenges in Privacy-Aware Mobility Data Analysis and in Text Mining with Enriched Data
隐私意识移动数据分析和丰富数据文本挖掘的研究挑战
  • 批准号:
    RGPIN-2016-03913
  • 财政年份:
    2018
  • 资助金额:
    $ 2.77万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了