Automated Monitoring of the Naval Information Space (AMNIS)

海军信息空间 (AMNIS) 自动监控

基本信息

  • 批准号:
    550722-2020
  • 负责人:
  • 金额:
    $ 20.4万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Alliance Grants
  • 财政年份:
    2021
  • 资助国家:
    加拿大
  • 起止时间:
    2021-01-01 至 2022-12-31
  • 项目状态:
    已结题

项目摘要

Modern defence organizations around the world face new challenges related to information flow. They deal with massive information streams from on-board sensors, coalitionpartners, or remote sites. This information needs to be absorbed and interpreted in its current decision-making context of time, space, and provenance. Such contextualization is known as Situational Awareness. The proposed AMNIS (Automated Monitoring of the Naval Information Space) project is an alliance of the Institute for Big Data Analytics at Dalhousie University (IBDA), the Atlantic Research Centre of the Defence Research and Development Canada (DRDC), and the General Dynamics (Mission Systems-Canada) group. AMNIS will bring the state-of-the-art data integration, modeling and predictive models to the task of Situational Awareness. AMNIS will build on the results and collaborative links established in the recent (2016-2019) IBDA-DRDC-Lockheed Martin Canada project on Mission-Relevant Information Management for Integrated Response (MIMIR). In AMNIS, we will use Machine Learning to address select SA aspects and learn the persistent alarm definitions from the data, to model the concepts of trust, to account for and reproduce doubtful provenance (adversarial) data, and to represent data drift. We will also develop techniques for data exploration and data-centered collaboration using visual queries and advanced data visualization. AMNIS will support more than 30 person-years of High- Quality Personnel training in Data Science, Machine Learning, and Data Visualization and advanced HCI -areas in high demand in the Canadian industrial and government labs.
世界各地的现代防务组织面临着与信息流动有关的新挑战。它们处理来自机载传感器、联盟伙伴或远程站点的海量信息流。这些信息需要在其当前的决策环境中被吸收和解释,包括时间、空间和来源。这种情境化被称为情景意识。拟议的AMNIS(海军信息空间自动监测)项目是达尔豪西大学大数据分析研究所(IBDA)、加拿大国防研究和发展局(DRDC)大西洋研究中心和通用动力(加拿大任务系统)小组的联盟。阿姆尼斯将把最先进的数据集成、建模和预测模型应用到态势感知任务中。AMNIS将在最近(2016-2019年)IBDA-DRDC-Lockheed Martin加拿大特派团相关信息管理促进综合应对项目(MIMIR)中建立的成果和协作联系的基础上再接再厉。在AMNIS,我们将使用机器学习来解决选定的SA方面,并从数据中学习持久警报定义,对信任的概念进行建模,解释和复制可疑的来源(对抗性)数据,并表示数据漂移。我们还将开发使用可视化查询和高级数据可视化进行数据探索和以数据为中心的协作的技术。AMNIS将在数据科学、机器学习、数据可视化和高级人机界面等加拿大工业和政府实验室需求较高的领域支持30多人年的高质量人才培训。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Matwin, Stan其他文献

deepBioWSD: effective deep neural word sense disambiguation of biomedical text data
Unsupervised named-entity recognition: Generating gazetteers and resolving ambiguity
A new algorithm for reducing the workload of experts in performing systematic reviews
Learning and evaluation in the presence of class hierarchies: Application to text categorization
A novel machine learning approach to analyzing geospatial vessel patterns using AIS data
  • DOI:
    10.1080/15481603.2022.2118437
  • 发表时间:
    2022-12-31
  • 期刊:
  • 影响因子:
    6.7
  • 作者:
    Ferreira, Martha Dais;Campbell, Jessica N. A.;Matwin, Stan
  • 通讯作者:
    Matwin, Stan

Matwin, Stan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Matwin, Stan', 18)}}的其他基金

Interpretability for Machine Learning
机器学习的可解释性
  • 批准号:
    CRC-2019-00383
  • 财政年份:
    2022
  • 资助金额:
    $ 20.4万
  • 项目类别:
    Canada Research Chairs
Causality in Machine Learning
机器学习中的因果关系
  • 批准号:
    RGPIN-2022-03667
  • 财政年份:
    2022
  • 资助金额:
    $ 20.4万
  • 项目类别:
    Discovery Grants Program - Individual
Research Challenges in Privacy-Aware Mobility Data Analysis and in Text Mining with Enriched Data
隐私意识移动数据分析和丰富数据文本挖掘的研究挑战
  • 批准号:
    RGPIN-2016-03913
  • 财政年份:
    2021
  • 资助金额:
    $ 20.4万
  • 项目类别:
    Discovery Grants Program - Individual
Interpretability For Machine Learning
机器学习的可解释性
  • 批准号:
    CRC-2019-00383
  • 财政年份:
    2021
  • 资助金额:
    $ 20.4万
  • 项目类别:
    Canada Research Chairs
Interpretability for Machine Learning
机器学习的可解释性
  • 批准号:
    CRC-2019-00383
  • 财政年份:
    2020
  • 资助金额:
    $ 20.4万
  • 项目类别:
    Canada Research Chairs
Research Challenges in Privacy-Aware Mobility Data Analysis and in Text Mining with Enriched Data
隐私意识移动数据分析和丰富数据文本挖掘的研究挑战
  • 批准号:
    RGPIN-2016-03913
  • 财政年份:
    2020
  • 资助金额:
    $ 20.4万
  • 项目类别:
    Discovery Grants Program - Individual
Automated Monitoring of the Naval Information Space (AMNIS)
海军信息空间 (AMNIS) 自动监控
  • 批准号:
    550722-2020
  • 财政年份:
    2020
  • 资助金额:
    $ 20.4万
  • 项目类别:
    Alliance Grants
Visual Text Analytics
视觉文本分析
  • 批准号:
    1000228345-2012
  • 财政年份:
    2019
  • 资助金额:
    $ 20.4万
  • 项目类别:
    Canada Research Chairs
Research Challenges in Privacy-Aware Mobility Data Analysis and in Text Mining with Enriched Data
隐私意识移动数据分析和丰富数据文本挖掘的研究挑战
  • 批准号:
    RGPIN-2016-03913
  • 财政年份:
    2019
  • 资助金额:
    $ 20.4万
  • 项目类别:
    Discovery Grants Program - Individual
Interpretability for Machine Learning
机器学习的可解释性
  • 批准号:
    CRC-2019-00383
  • 财政年份:
    2019
  • 资助金额:
    $ 20.4万
  • 项目类别:
    Canada Research Chairs

相似海外基金

Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
  • 批准号:
    2908918
  • 财政年份:
    2027
  • 资助金额:
    $ 20.4万
  • 项目类别:
    Studentship
PAN EUROPEAN ASSESSMENT, MONITORING, AND MITIGATION OF CHEMICAL STRESSORS ON THE HEALTH OF WILD POLLINATORS
泛欧评估、监测和缓解化学胁迫因素对野生传粉者健康的影响
  • 批准号:
    10098159
  • 财政年份:
    2024
  • 资助金额:
    $ 20.4万
  • 项目类别:
    EU-Funded
Sustainable wearable e-textiles for remote monitoring of atrial fibrillation patients
用于远程监测心房颤动患者的可持续可穿戴电子纺织品
  • 批准号:
    EP/Y021096/1
  • 财政年份:
    2024
  • 资助金额:
    $ 20.4万
  • 项目类别:
    Research Grant
Intelligent Breast Cancer DiagnOsis and MonItoring Therapeutic Response Training Network (CanDoIt)
智能乳腺癌诊断和监测治疗反应训练网络(CanDoIt)
  • 批准号:
    EP/Y03693X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 20.4万
  • 项目类别:
    Research Grant
CAREER: Secure Miniaturized Bio-Electronic Sensors for Real-Time In-Body Monitoring
职业:用于实时体内监测的安全微型生物电子传感器
  • 批准号:
    2338792
  • 财政年份:
    2024
  • 资助金额:
    $ 20.4万
  • 项目类别:
    Continuing Grant
PFI-TT: A Novel Wireless Sensor for Continuous Monitoring of Patients with Chronic Diseases
PFI-TT:一种用于持续监测慢性病患者的新型无线传感器
  • 批准号:
    2345803
  • 财政年份:
    2024
  • 资助金额:
    $ 20.4万
  • 项目类别:
    Continuing Grant
I-Corps: Translation Potential of Head Impact Monitoring with Embedded Sensor Technology in Sports Helmets
I-Corps:运动头盔中嵌入式传感器技术的头部碰撞监测的转化潜力
  • 批准号:
    2416207
  • 财政年份:
    2024
  • 资助金额:
    $ 20.4万
  • 项目类别:
    Standard Grant
Multi-dimensional quantum-enabled sub-THz Space-Borne ISAR sensing for space domain awareness and critical infrastructure monitoring - SBISAR
用于空间域感知和关键基础设施监测的多维量子亚太赫兹星载 ISAR 传感 - SBISAR
  • 批准号:
    EP/Y022092/1
  • 财政年份:
    2024
  • 资助金额:
    $ 20.4万
  • 项目类别:
    Research Grant
OAC Core: Cost-Adaptive Monitoring and Real-Time Tuning at Function-Level
OAC核心:功能级成本自适应监控和实时调优
  • 批准号:
    2402542
  • 财政年份:
    2024
  • 资助金额:
    $ 20.4万
  • 项目类别:
    Standard Grant
STTR Phase I: Using Audio Analytics and Sensing to Enhance Broiler Chicken Welfare and Performance by Continuously Monitoring Bird Vocalizations
STTR 第一阶段:使用音频分析和传感,通过持续监测鸡的发声来提高肉鸡的福利和性能
  • 批准号:
    2335590
  • 财政年份:
    2024
  • 资助金额:
    $ 20.4万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了