Hybrid Data-driven Physics-based Modeling for Machine Fault Detection, Diagnosis, and Prediction
用于机器故障检测、诊断和预测的混合数据驱动的基于物理的建模
基本信息
- 批准号:RGPIN-2019-03967
- 负责人:
- 金额:$ 2.84万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2019
- 资助国家:加拿大
- 起止时间:2019-01-01 至 2020-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Optimization of operation and maintenance activities would result in huge efficiency and productivity improvements across most industrial and commercial sectors in Canada. However, this requires the collection and appropriate use of meaningful parameters that correlate with system performance, degradation, and failure. Existing monitoring and maintenance decision support strategies for most mechanical and structural components and systems still require human supervision and decision making, especially when the system being considered is complex, mobile, remote and/or operates in non-steady state modes. Automation of significant parts of this activity is urgently needed.******When large amounts of historical data are available, fault detection and diagnosis is possible. Data-driven methods demonstrate huge potential here because of their ability to sort data and recognize patterns representing faulty conditions. However, when only limited data is available that represents failure and/or degradation, these methods are severely constrained. New recursive data processing strategies (particularly appropriate for dynamic signals collected from rotating machinery) will be explored to improve the robustness of these methods when data is scarce. Additionally, prediction is more challenging when using data-based methods because they only represent past experience. New techniques will be developed that can integrate new data collected on-line allowing for rapidly updated models for improved prognostics. ******Physics-based models are excellent tools for prediction. These models may range dramatically in size and complexity, but modification to allow incorporation of component faults or system degradation is relatively easy. This facilitates system or component performance prediction. New models will be developed for gear teeth, planetary gear systems, and motor/generator systems.******Combining information from multiple sources significantly improves the confidence level. Hybrid data-driven and physics-based protocols will allow the advantages of both to be enhanced and the disadvantages to be minimized. Such hybrid approaches will facilitate the optimization of system operation and maintenance. Preliminary work in this vane has already shown that dramatic improvements in accuracy are possible. Further development could result in huge improvements in system degradation detection, fault diagnosis and failure prediction. A breakthrough in hybrid strategy designs and their application across a wider array of industries and commercial applications is critically needed to service the rapidly expanding adoption of autonomous systems (cars, light rail trains, wind turbine generators).**
优化运营和维护活动将大大提高加拿大大多数工业和商业部门的效率和生产力。然而,这需要收集和适当使用与系统性能、降级和故障相关的有意义的参数。大多数机械和结构部件和系统的现有监测和维护决策支持策略仍然需要人的监督和决策制定,特别是当所考虑的系统是复杂的、移动的、远程的和/或以非稳态模式操作时。这一活动的重要部分迫切需要自动化。当大量的历史数据可用时,故障检测和诊断是可能的。数据驱动的方法在这里展示了巨大的潜力,因为它们能够对数据进行排序并识别代表故障条件的模式。然而,当只有有限的数据,代表故障和/或退化,这些方法受到严重限制。新的递归数据处理策略(特别适用于从旋转机械收集的动态信号)将被探索,以提高这些方法的鲁棒性时,数据是稀缺的。此外,当使用基于数据的方法时,预测更具挑战性,因为它们只代表过去的经验。将开发新的技术,将在线收集的新数据结合起来,以便迅速更新模型,改进性能。* 基于物理的模型是预测的绝佳工具。这些模型在大小和复杂性上可能有很大的不同,但是修改以允许合并组件故障或系统降级相对容易。这有助于系统或部件性能预测。将为齿轮齿、行星齿轮系统和电动机/发电机系统开发新模型。******将来自多个来源的信息结合起来,可以显著提高置信度。混合数据驱动和基于物理的协议将允许两者的优点得到增强,缺点被最小化。这种混合方法将促进系统操作和维护的优化。在此叶片的初步工作已经表明,显着提高精度是可能的。进一步的发展可能会导致系统退化检测,故障诊断和故障预测的巨大改进。混合策略设计及其在更广泛的行业和商业应用中的应用急需突破,以服务于自动系统(汽车、轻轨列车、风力涡轮机发电机)的迅速扩大采用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mechefske, Christopher其他文献
Multi-mode diagnosis of a gas turbine engine using an adaptive neuro-fuzzy system
- DOI:
10.1016/j.cja.2017.11.017 - 发表时间:
2018-01-01 - 期刊:
- 影响因子:5.7
- 作者:
Hanachi, Houman;Liu, Jie;Mechefske, Christopher - 通讯作者:
Mechefske, Christopher
Performance-Based Gas Turbine Health Monitoring, Diagnostics, and Prognostics: A Survey
- DOI:
10.1109/tr.2018.2822702 - 发表时间:
2018-09-01 - 期刊:
- 影响因子:5.9
- 作者:
Hanachi, Houman;Mechefske, Christopher;Chen, Ying - 通讯作者:
Chen, Ying
Mechefske, Christopher的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mechefske, Christopher', 18)}}的其他基金
Hybrid Data-driven Physics-based Modeling for Machine Fault Detection, Diagnosis, and Prediction
用于机器故障检测、诊断和预测的混合数据驱动的基于物理的建模
- 批准号:
RGPIN-2019-03967 - 财政年份:2022
- 资助金额:
$ 2.84万 - 项目类别:
Discovery Grants Program - Individual
Fuselage structural dynamic and vibro-acoustic analysis, modeling, and optimization
机身结构动力学和振动声学分析、建模和优化
- 批准号:
536637-2018 - 财政年份:2021
- 资助金额:
$ 2.84万 - 项目类别:
Collaborative Research and Development Grants
Machine tool monitoring using data analytics and physics-based models
使用数据分析和基于物理的模型进行机床监控
- 批准号:
523509-2018 - 财政年份:2021
- 资助金额:
$ 2.84万 - 项目类别:
Collaborative Research and Development Grants
Hybrid Data-driven Physics-based Modeling for Machine Fault Detection, Diagnosis, and Prediction
用于机器故障检测、诊断和预测的混合数据驱动的基于物理的建模
- 批准号:
RGPIN-2019-03967 - 财政年份:2021
- 资助金额:
$ 2.84万 - 项目类别:
Discovery Grants Program - Individual
Machine tool monitoring using data analytics and physics-based models
使用数据分析和基于物理的模型进行机床监控
- 批准号:
523509-2018 - 财政年份:2020
- 资助金额:
$ 2.84万 - 项目类别:
Collaborative Research and Development Grants
Hybrid Data-driven Physics-based Modeling for Machine Fault Detection, Diagnosis, and Prediction
用于机器故障检测、诊断和预测的混合数据驱动的基于物理的建模
- 批准号:
RGPIN-2019-03967 - 财政年份:2020
- 资助金额:
$ 2.84万 - 项目类别:
Discovery Grants Program - Individual
Fuselage structural dynamic and vibro-acoustic analysis, modeling, and optimization
机身结构动力学和振动声学分析、建模和优化
- 批准号:
536637-2018 - 财政年份:2020
- 资助金额:
$ 2.84万 - 项目类别:
Collaborative Research and Development Grants
Machine tool monitoring using data analytics and physics-based models
使用数据分析和基于物理的模型进行机床监控
- 批准号:
523509-2018 - 财政年份:2019
- 资助金额:
$ 2.84万 - 项目类别:
Collaborative Research and Development Grants
Fuselage structural dynamic and vibro-acoustic analysis, modeling, and optimization
机身结构动力学和振动声学分析、建模和优化
- 批准号:
536637-2018 - 财政年份:2019
- 资助金额:
$ 2.84万 - 项目类别:
Collaborative Research and Development Grants
Characterization and Control of Non-Steady State Machine Vibration
非稳态机器振动的表征和控制
- 批准号:
RGPIN-2014-05922 - 财政年份:2018
- 资助金额:
$ 2.84万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
Data-driven Recommendation System Construction of an Online Medical Platform Based on the Fusion of Information
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国青年学者研究基金项目
Development of a Linear Stochastic Model for Wind Field Reconstruction from Limited Measurement Data
- 批准号:
- 批准年份:2020
- 资助金额:40 万元
- 项目类别:
基于Linked Open Data的Web服务语义互操作关键技术
- 批准号:61373035
- 批准年份:2013
- 资助金额:77.0 万元
- 项目类别:面上项目
Molecular Interaction Reconstruction of Rheumatoid Arthritis Therapies Using Clinical Data
- 批准号:31070748
- 批准年份:2010
- 资助金额:34.0 万元
- 项目类别:面上项目
高维数据的函数型数据(functional data)分析方法
- 批准号:11001084
- 批准年份:2010
- 资助金额:16.0 万元
- 项目类别:青年科学基金项目
染色体复制负调控因子datA在细胞周期中的作用
- 批准号:31060015
- 批准年份:2010
- 资助金额:25.0 万元
- 项目类别:地区科学基金项目
Computational Methods for Analyzing Toponome Data
- 批准号:60601030
- 批准年份:2006
- 资助金额:17.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Hybrid Analytical and Data-Driven Models for Integrated Simulation and Design of Complex High Frequency Multi-Winding Magnetic Components
用于复杂高频多绕组磁性元件集成仿真和设计的混合分析和数据驱动模型
- 批准号:
2344664 - 财政年份:2024
- 资助金额:
$ 2.84万 - 项目类别:
Standard Grant
EAGER: Development of a Hybrid Knowledge- and Data-Driven Approach to Guide the Design of Immunotherapeutic Cells
EAGER:开发混合知识和数据驱动的方法来指导免疫治疗细胞的设计
- 批准号:
2324742 - 财政年份:2023
- 资助金额:
$ 2.84万 - 项目类别:
Continuing Grant
Collaborative Research: DMREF: Data-Driven Prediction of Hybrid Organic-Inorganic Structures
合作研究:DMREF:混合有机-无机结构的数据驱动预测
- 批准号:
2323547 - 财政年份:2023
- 资助金额:
$ 2.84万 - 项目类别:
Continuing Grant
Automatic quality assessment of waste plastic bales through hybrid sensing and data driven modelling
通过混合传感和数据驱动建模对废塑料包进行自动质量评估
- 批准号:
EP/W026228/1 - 财政年份:2023
- 资助金额:
$ 2.84万 - 项目类别:
Research Grant
Collaborative Research: DMREF: Data-Driven Prediction of Hybrid Organic-Inorganic Structures
合作研究:DMREF:混合有机-无机结构的数据驱动预测
- 批准号:
2323548 - 财政年份:2023
- 资助金额:
$ 2.84万 - 项目类别:
Continuing Grant
Collaborative Research: DMREF: Data-Driven Prediction of Hybrid Organic-Inorganic Structures
合作研究:DMREF:混合有机-无机结构的数据驱动预测
- 批准号:
2323546 - 财政年份:2023
- 资助金额:
$ 2.84万 - 项目类别:
Continuing Grant
Building a data-driven educational improvement platform by supporting hybrid class design
支持混合班级设计,构建数据驱动的教育改进平台
- 批准号:
23H00992 - 财政年份:2023
- 资助金额:
$ 2.84万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Hybrid Model-Based and Data-Driven Frameworks for High-Resolution Tomographic Imaging
基于混合模型和数据驱动的高分辨率断层成像框架
- 批准号:
10714540 - 财政年份:2023
- 资助金额:
$ 2.84万 - 项目类别:
Data-driven Thermal Management of Electric/Hybrid Vehicles for Optimum Energy Consumption
数据驱动的电动/混合动力汽车热管理以实现最佳能源消耗
- 批准号:
2683123 - 财政年份:2022
- 资助金额:
$ 2.84万 - 项目类别:
Studentship
NeTS: Small: Hybrid Switching in Data Center Networks: Systems-driven Modeling and Principled Algorithms
NetS:小型:数据中心网络中的混合交换:系统驱动的建模和原理算法
- 批准号:
2309187 - 财政年份:2022
- 资助金额:
$ 2.84万 - 项目类别:
Standard Grant