Machine tool monitoring using data analytics and physics-based models

使用数据分析和基于物理的模型进行机床监控

基本信息

  • 批准号:
    523509-2018
  • 负责人:
  • 金额:
    $ 3万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Collaborative Research and Development Grants
  • 财政年份:
    2020
  • 资助国家:
    加拿大
  • 起止时间:
    2020-01-01 至 2021-12-31
  • 项目状态:
    已结题

项目摘要

In order to remain commercially competitive Checkfluid continually searches for and implements optimum manufacturing methods. The focus of this project is on ways to reduce manufacturing costs while maximizing the product quality and minimizing environmental impact. Checkfluid wishes to leverage their existing expertise with the growing knowledge of on-line dynamic signal analysis techniques for detecting, diagnosing, and predicting problems in metal machining operations (machine tool wear, low quality part production, machine component and/or system degradation) and combine these areas of expertise with new data analytics (for improved fault detection and diagnosis) and physics-based component and system modeling (for improved fault and degradation prediction). The proposed project has four main objectives. The first objective is to finalize and verify accurate data-driven modeling tools for use in detecting and diagnosing degradation of cutting tool performance. The second objective is to define, test and verify a cutting tool analytical model that can be used for cutting tool wear prediction under variable operating conditions and where existing data representing past tool wear rates and tool failures is not available. The third objective is to define various strategies for combining the data-driven models and the physics-based models into hybrid methodologies and test these to confirm their advantageous performance over 'standard' methods. The fourth objective is to investigate the application of the developed methods on different machines (such as gearboxes) to investigate the generic application of these new techniques. A total of at least 6 HQP will be trained during this research work.
为了保持商业竞争力,Checkfluid不断寻找并实施最佳的制造方法。该项目的重点是如何降低制造成本,同时最大限度地提高产品质量和减少对环境的影响。Checkfluid希望利用他们现有的专业知识和不断增长的在线动态信号分析技术来检测、诊断和预测金属加工操作中的问题(机床磨损,零件生产质量低,机器部件和/或系统退化),并将联合收割机这些专业领域与新的数据分析相结合(用于改进的故障检测和诊断)和基于物理的部件和系统建模(用于改进的故障和退化预测)。 拟议的项目有四个主要目标。第一个目标是最终确定和验证用于检测和诊断切削刀具性能退化的精确数据驱动建模工具。第二个目标是定义、测试和验证一个切削刀具分析模型,该模型可用于在可变的操作条件下预测切削刀具磨损,并且现有的表示过去刀具磨损率和刀具故障的数据不可用。第三个目标是定义各种策略,将数据驱动的模型和基于物理的模型结合到混合方法中,并测试这些方法,以确认其优于“标准”方法的性能。第四个目标是调查不同的机器(如齿轮箱)的开发方法的应用,以调查这些新技术的通用应用。在本研究工作期间,将对至少6名HQP进行培训。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Mechefske, Christopher其他文献

Multi-mode diagnosis of a gas turbine engine using an adaptive neuro-fuzzy system
  • DOI:
    10.1016/j.cja.2017.11.017
  • 发表时间:
    2018-01-01
  • 期刊:
  • 影响因子:
    5.7
  • 作者:
    Hanachi, Houman;Liu, Jie;Mechefske, Christopher
  • 通讯作者:
    Mechefske, Christopher
Performance-Based Gas Turbine Health Monitoring, Diagnostics, and Prognostics: A Survey
  • DOI:
    10.1109/tr.2018.2822702
  • 发表时间:
    2018-09-01
  • 期刊:
  • 影响因子:
    5.9
  • 作者:
    Hanachi, Houman;Mechefske, Christopher;Chen, Ying
  • 通讯作者:
    Chen, Ying

Mechefske, Christopher的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Mechefske, Christopher', 18)}}的其他基金

Hybrid Data-driven Physics-based Modeling for Machine Fault Detection, Diagnosis, and Prediction
用于机器故障检测、诊断和预测的混合数据驱动的基于物理的建模
  • 批准号:
    RGPIN-2019-03967
  • 财政年份:
    2022
  • 资助金额:
    $ 3万
  • 项目类别:
    Discovery Grants Program - Individual
Fuselage structural dynamic and vibro-acoustic analysis, modeling, and optimization
机身结构动力学和振动声学分析、建模和优化
  • 批准号:
    536637-2018
  • 财政年份:
    2021
  • 资助金额:
    $ 3万
  • 项目类别:
    Collaborative Research and Development Grants
Hybrid Data-driven Physics-based Modeling for Machine Fault Detection, Diagnosis, and Prediction
用于机器故障检测、诊断和预测的混合数据驱动的基于物理的建模
  • 批准号:
    RGPIN-2019-03967
  • 财政年份:
    2021
  • 资助金额:
    $ 3万
  • 项目类别:
    Discovery Grants Program - Individual
Machine tool monitoring using data analytics and physics-based models
使用数据分析和基于物理的模型进行机床监控
  • 批准号:
    523509-2018
  • 财政年份:
    2021
  • 资助金额:
    $ 3万
  • 项目类别:
    Collaborative Research and Development Grants
Hybrid Data-driven Physics-based Modeling for Machine Fault Detection, Diagnosis, and Prediction
用于机器故障检测、诊断和预测的混合数据驱动的基于物理的建模
  • 批准号:
    RGPIN-2019-03967
  • 财政年份:
    2020
  • 资助金额:
    $ 3万
  • 项目类别:
    Discovery Grants Program - Individual
Fuselage structural dynamic and vibro-acoustic analysis, modeling, and optimization
机身结构动力学和振动声学分析、建模和优化
  • 批准号:
    536637-2018
  • 财政年份:
    2020
  • 资助金额:
    $ 3万
  • 项目类别:
    Collaborative Research and Development Grants
Machine tool monitoring using data analytics and physics-based models
使用数据分析和基于物理的模型进行机床监控
  • 批准号:
    523509-2018
  • 财政年份:
    2019
  • 资助金额:
    $ 3万
  • 项目类别:
    Collaborative Research and Development Grants
Hybrid Data-driven Physics-based Modeling for Machine Fault Detection, Diagnosis, and Prediction
用于机器故障检测、诊断和预测的混合数据驱动的基于物理的建模
  • 批准号:
    RGPIN-2019-03967
  • 财政年份:
    2019
  • 资助金额:
    $ 3万
  • 项目类别:
    Discovery Grants Program - Individual
Fuselage structural dynamic and vibro-acoustic analysis, modeling, and optimization
机身结构动力学和振动声学分析、建模和优化
  • 批准号:
    536637-2018
  • 财政年份:
    2019
  • 资助金额:
    $ 3万
  • 项目类别:
    Collaborative Research and Development Grants
Characterization and Control of Non-Steady State Machine Vibration
非稳态机器振动的表征和控制
  • 批准号:
    RGPIN-2014-05922
  • 财政年份:
    2018
  • 资助金额:
    $ 3万
  • 项目类别:
    Discovery Grants Program - Individual

相似海外基金

Optimising CNC Machine Tool Coolant Fluid condition to prolong usage and efficiency of an expensive essential resource thereby reducing cost, improving production quality and protecting operators using a unique and innovative Coolant Monitoring Analyser
使用独特和创新的冷却液监测分析仪优化数控机床冷却液条件,延长昂贵的重要资源的使用时间和效率,从而降低成本、提高生产质量并保护操作员
  • 批准号:
    10075142
  • 财政年份:
    2023
  • 资助金额:
    $ 3万
  • 项目类别:
    Grant for R&D
A machine learning based fetal monitoring system to predict and prevent fetal hypoxia.
基于机器学习的胎儿监测系统,用于预测和预防胎儿缺氧。
  • 批准号:
    10760437
  • 财政年份:
    2023
  • 资助金额:
    $ 3万
  • 项目类别:
Optimization of monitoring, prediction and phenotyping of deterioration of inhospital patients using machine learning and multimodal real time data
使用机器学习和多模态实时数据优化住院患者病情恶化的监测、预测和表型分析
  • 批准号:
    10735863
  • 财政年份:
    2023
  • 资助金额:
    $ 3万
  • 项目类别:
Training of machine learning algorithms for the classification of accelerometer-measured bednet use and related behaviors associated with malaria risk
训练机器学习算法,用于对加速计测量的蚊帐使用和与疟疾风险相关的相关行为进行分类
  • 批准号:
    10727374
  • 财政年份:
    2023
  • 资助金额:
    $ 3万
  • 项目类别:
Machine Learning and Radiomics Techniques for Analysis of Daily MRI in Glioblastoma Patients
用于分析胶质母细胞瘤患者日常 MRI 的机器学习和放射组学技术
  • 批准号:
    10751672
  • 财政年份:
    2023
  • 资助金额:
    $ 3万
  • 项目类别:
Metasurface enhanced and machine learning aided spectrochemical liquid biopsy
超表面增强和机器学习辅助光谱化学液体活检
  • 批准号:
    10647397
  • 财政年份:
    2023
  • 资助金额:
    $ 3万
  • 项目类别:
Leveraging remote blood pressure monitoring and interpretable machine learning to improve clinical workflows for hypertensive disorders of pregnancy
利用远程血压监测和可解释的机器学习来改善妊娠期高血压疾病的临床工作流程
  • 批准号:
    10822625
  • 财政年份:
    2023
  • 资助金额:
    $ 3万
  • 项目类别:
SCH: New Advanced Machine Learning Framework for Mining Heterogeneous Ocular Data to Accelerate
SCH:新的先进机器学习框架,用于挖掘异构眼部数据以加速
  • 批准号:
    10601180
  • 财政年份:
    2022
  • 资助金额:
    $ 3万
  • 项目类别:
Non-Invasive Machine Learned Device to Personalize Arrhythmia Therapy
用于个性化心律失常治疗的非侵入性机器学习设备
  • 批准号:
    10468565
  • 财政年份:
    2022
  • 资助金额:
    $ 3万
  • 项目类别:
SCH: New Advanced Machine Learning Framework for Mining Heterogeneous Ocular Data to Accelerate
SCH:新的先进机器学习框架,用于挖掘异构眼部数据以加速
  • 批准号:
    10665804
  • 财政年份:
    2022
  • 资助金额:
    $ 3万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了