Spatial Learning and Spatial Attention

空间学习和空间注意力

基本信息

  • 批准号:
    RGPIN-2017-04336
  • 负责人:
  • 金额:
    $ 2.84万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2019
  • 资助国家:
    加拿大
  • 起止时间:
    2019-01-01 至 2020-12-31
  • 项目状态:
    已结题

项目摘要

How do we learn to find our way in a new environment? The proposed research will connect spatial learning to attention using an electric fish model and determine the neural bases for such learning. Pulse electric fish (Gymnotus sp.) use electric organ discharges (EOD) to sense their environment in the dark. These fish learn the location of food with respect to landmarks using their electrosense. Their EOD rate per unit distance (sampling density, SD) is a signature of attention. SD is associated with spatial learning: it is high when the fish first encounters landmarks or food but diminishes after learning. SD increases are also induced by memory: it increases when no food is present at its expected location. In order to locate the food with respect to a landmark, the fish has to estimate the distance between them. Our recent experiments have shown that electrosensory neurons in the fish's thalamus compute the time interval between encounters with objects: their firing rate will signal the time between encountering a landmark followed by food. We hypothesize that the response of these neurons, combined with an independent estimate of the fish's speed, could be used to estimate the distance from landmark to food. We propose to test the predictions that flow from this hypothesis with behavioural experiments and by recording from the thalamus of freely swimming fish engaged in the same navigational task examined in the behavioural studies.***We will do behavioural experiments (infrared lighting) to determine whether the fish controls its swim speed as it navigates from a single landmark to the food. We predict that the fish will swim slowly and with minimal trial-to-trial variability as it approaches the expected food location and will simultaneously increase its SD. We also predict that the fish's estimate of food location will be less precise when it is located further from the landmark. We will monitor SD and connect it to the accuracy of the fish's ability to localize food as a function of its distance from the landmark.***We will record from the time interval coding cells as the fish swims towards food located at varying distances from the landmark. We predict that, when the fish controls its swim speed, these cells will accurately encode distance between landmark and food; the variability of the firing rate response will increase with distance. Finally, we will record from thalamic neurons responsive to lateral line input and determine how accurately they can encode the fish's speed. We will then be able to connect the fish's attentional control of its speed and connect it to the accuracy of the neural estimate of speed. Given the neural speed estimates and the time interval estimates, we will use a computational model to predict the precision of the neural estimate of food location. By comparing the model predictions to the behavioural data, we will be able to determine exactly how a vertebrate can create a “spatial map”.
我们如何在新的环境中找到自己的方向?这项研究将使用电鱼模型将空间学习与注意力联系起来,并确定这种学习的神经基础。脉冲电鱼(Gymnotus sp.)在黑暗中使用电子器官放电(EOD)来感知它们的环境。这些鱼利用它们的电感觉来学习食物相对于地标的位置。他们每单位距离的爆炸物处理率(抽样密度,SD)是一种注意力的标志。SD与空间学习有关:当鱼第一次遇到地标或食物时,SD很高,但在学习后减少。SD增加也是由记忆引起的:当预期位置没有食物时,SD增加。为了确定食物相对于地标的位置,鱼必须估计它们之间的距离。我们最近的实验表明,鱼丘脑中的电感觉神经元计算与物体相遇之间的时间间隔:它们的放电频率将发出信号,指示遇到地标和食物之间的时间。我们假设这些神经元的反应,结合对鱼的速度的独立估计,可以用来估计从地标到食物的距离。我们建议用行为实验和记录自由游动的鱼的丘脑来检验这个假设的预测,这些鱼从事与行为研究中相同的导航任务。我们将做行为实验(红外线照明),以确定鱼是否控制其游泳速度,因为它从一个单一的地标导航到食物。我们预测,鱼将游泳缓慢,并以最小的试验到试验的变化,因为它接近预期的食物的位置,同时将增加其SD。我们还预测,鱼的食物位置的估计将不太精确,当它位于远离地标。我们将监测SD,并将其与鱼类定位食物的能力的准确性联系起来,作为其与地标距离的函数。我们将记录从时间间隔编码细胞作为鱼游向食物位于不同距离的地标。我们预测,当鱼控制它的游泳速度,这些细胞将准确地编码地标和食物之间的距离,发射率响应的变异性将随着距离的增加。最后,我们将记录丘脑神经元对侧线输入的反应,并确定它们对鱼的速度编码的准确性。这样我们就可以把鱼的注意力控制速度和神经对速度的准确估计联系起来。给定神经速度估计和时间间隔估计,我们将使用计算模型来预测食物位置的神经估计的精度。通过将模型预测与行为数据进行比较,我们将能够准确地确定脊椎动物如何创建“空间地图”。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Maler, Leonard其他文献

Frequency-Tuned Cerebellar Channels and Burst-Induced LTD Lead to the Cancellation of Redundant Sensory Inputs
  • DOI:
    10.1523/jneurosci.0193-11.2011
  • 发表时间:
    2011-07-27
  • 期刊:
  • 影响因子:
    5.3
  • 作者:
    Bol, Kieran;Marsat, Gary;Maler, Leonard
  • 通讯作者:
    Maler, Leonard
Limits of linear rate coding of dynamic stimuli by electroreceptor afferents
  • DOI:
    10.1152/jn.01243.2006
  • 发表时间:
    2007-04-01
  • 期刊:
  • 影响因子:
    2.5
  • 作者:
    Gussin, Daniel;Benda, Jan;Maler, Leonard
  • 通讯作者:
    Maler, Leonard
Linking active sensing and spatial learning in weakly electric fish
  • DOI:
    10.1016/j.conb.2021.07.002
  • 发表时间:
    2021-12-01
  • 期刊:
  • 影响因子:
    5.7
  • 作者:
    Engelmann, Jacob;Wallach, Avner;Maler, Leonard
  • 通讯作者:
    Maler, Leonard
Postsynaptic Receptive Field Size and Spike Threshold Determine Encoding of High-Frequency Information Via Sensitivity to Synchronous Presynaptic Activity
  • DOI:
    10.1152/jn.90814.2008
  • 发表时间:
    2009-03-01
  • 期刊:
  • 影响因子:
    2.5
  • 作者:
    Middleton, Jason W.;Longtin, Andre;Maler, Leonard
  • 通讯作者:
    Maler, Leonard
Long-term Behavioral Tracking of Freely Swimming Weakly Electric Fish
  • DOI:
    10.3791/50962
  • 发表时间:
    2014-03-01
  • 期刊:
  • 影响因子:
    1.2
  • 作者:
    Jun, James J.;Longtin, Andre;Maler, Leonard
  • 通讯作者:
    Maler, Leonard

Maler, Leonard的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Maler, Leonard', 18)}}的其他基金

Spatial Learning and Spatial Attention
空间学习和空间注意力
  • 批准号:
    RGPIN-2017-04336
  • 财政年份:
    2021
  • 资助金额:
    $ 2.84万
  • 项目类别:
    Discovery Grants Program - Individual
Spatial Learning and Spatial Attention
空间学习和空间注意力
  • 批准号:
    RGPIN-2017-04336
  • 财政年份:
    2020
  • 资助金额:
    $ 2.84万
  • 项目类别:
    Discovery Grants Program - Individual
Spatial Learning and Spatial Attention
空间学习和空间注意力
  • 批准号:
    RGPIN-2017-04336
  • 财政年份:
    2018
  • 资助金额:
    $ 2.84万
  • 项目类别:
    Discovery Grants Program - Individual
Spatial Learning and Spatial Attention
空间学习和空间注意力
  • 批准号:
    RGPIN-2017-04336
  • 财政年份:
    2017
  • 资助金额:
    $ 2.84万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    合作创新研究团队
Understanding structural evolution of galaxies with machine learning
  • 批准号:
    n/a
  • 批准年份:
    2022
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目
煤矿安全人机混合群智感知任务的约束动态多目标Q-learning进化分配
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于领弹失效考量的智能弹药编队短时在线Q-learning协同控制机理
  • 批准号:
    62003314
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
集成上下文张量分解的e-learning资源推荐方法研究
  • 批准号:
    61902016
  • 批准年份:
    2019
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
具有时序迁移能力的Spiking-Transfer learning (脉冲-迁移学习)方法研究
  • 批准号:
    61806040
  • 批准年份:
    2018
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
基于Deep-learning的三江源区冰川监测动态识别技术研究
  • 批准号:
    51769027
  • 批准年份:
    2017
  • 资助金额:
    38.0 万元
  • 项目类别:
    地区科学基金项目
具有时序处理能力的Spiking-Deep Learning(脉冲深度学习)方法研究
  • 批准号:
    61573081
  • 批准年份:
    2015
  • 资助金额:
    64.0 万元
  • 项目类别:
    面上项目
基于有向超图的大型个性化e-learning学习过程模型的自动生成与优化
  • 批准号:
    61572533
  • 批准年份:
    2015
  • 资助金额:
    66.0 万元
  • 项目类别:
    面上项目
E-Learning中学习者情感补偿方法的研究
  • 批准号:
    61402392
  • 批准年份:
    2014
  • 资助金额:
    26.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

The everyday learning opportunities of young children with attention and motor difficulties: From understanding constraints to reshaping intervention
注意力和运动困难幼儿的日常学习机会:从理解限制到重塑干预
  • 批准号:
    MR/X032922/1
  • 财政年份:
    2024
  • 资助金额:
    $ 2.84万
  • 项目类别:
    Fellowship
CAREER: Designing Ultra-Energy-Efficient Intelligent Hardware with On-Chip Learning, Attention, and Inference
职业:设计具有片上学习、注意力和推理功能的超节能智能硬件
  • 批准号:
    2336012
  • 财政年份:
    2023
  • 资助金额:
    $ 2.84万
  • 项目类别:
    Continuing Grant
The effect of tiredness on attention, word-learning, and their respective brain regions in infancy.
婴儿期疲劳对注意力、单词学习及其各自大脑区域的影响。
  • 批准号:
    2887987
  • 财政年份:
    2023
  • 资助金额:
    $ 2.84万
  • 项目类别:
    Studentship
The synaptic basis of learning and attention
学习和注意力的突触基础
  • 批准号:
    2723242
  • 财政年份:
    2022
  • 资助金额:
    $ 2.84万
  • 项目类别:
    Studentship
How multi-digit number names guide attention, memory, and place value learning en early elementary mathematics
多位数字名称如何引导早期初等数学的注意力、记忆力和位值学习
  • 批准号:
    2200781
  • 财政年份:
    2022
  • 资助金额:
    $ 2.84万
  • 项目类别:
    Standard Grant
Attention Networks and Optimized Deep Learning Architectures for Cancer Diagnosis and Prognosis in Medical Imaging
用于医学影像中癌症诊断和预后的注意力网络和优化的深度学习架构
  • 批准号:
    RGPIN-2021-03417
  • 财政年份:
    2022
  • 资助金额:
    $ 2.84万
  • 项目类别:
    Discovery Grants Program - Individual
Attention-based Skill Discovery for Robot Learning
基于注意力的机器人学习技能发现
  • 批准号:
    569498-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 2.84万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Machine Learning Methods to Develop and Deploy Real-Time Risk Surveillance for Autism Spectrum Disorder and Attention Deficit Hyperactivity Disorder from the Electronic Health Record
用于开发和部署电子健康记录中自闭症谱系障碍和注意力缺陷多动障碍实时风险监测的机器学习方法
  • 批准号:
    10449468
  • 财政年份:
    2022
  • 资助金额:
    $ 2.84万
  • 项目类别:
CAREER DBER: The Role of Internal Attention in Undergraduate Biology Learning
CAREER DBER:内部注意力在本科生物学学习中的作用
  • 批准号:
    2145551
  • 财政年份:
    2022
  • 资助金额:
    $ 2.84万
  • 项目类别:
    Continuing Grant
Research on the role of attention in improving video-based learning
注意力在改善视频学习中的作用研究
  • 批准号:
    2201835
  • 财政年份:
    2022
  • 资助金额:
    $ 2.84万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了