CAREER: Algebraic, Analytic, and Dynamical Properties of Group Actions on 1-Manifolds and Related Spaces

职业:1-流形和相关空间上群作用的代数、解析和动力学性质

基本信息

  • 批准号:
    2240136
  • 负责人:
  • 金额:
    $ 55.3万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-06-01 至 2028-05-31
  • 项目状态:
    未结题

项目摘要

A group is a mathematical abstraction of symmetries of a physical object or a theoretical space. Groups are fundamental objects in mathematics that also emerge in various applications such as in computer science and physics. The algebraic notion of a group associates to a set a binary operation, like multiplication, which satisfies a list of axioms. Groups emerge naturally as symmetries of various types of concrete or abstract spaces in mathematics. There is an intricate relationship between the geometric properties of these spaces and the algebraic properties of their groups of symmetries. The PI will continue his investigation of the landscape of infinite groups that emerge as symmetries of the most natural spaces in mathematics, the circle and the real line. The PI will organize two research workshops aimed at graduate students, and two research experiences programs for undergraduates. These shall be aimed at training a diverse body of students to become future leaders in mathematics. These activities will incorporate computational methods into the students' mathematical exploration of the landscape of infinite groups.This project is jointly funded by Topology and the Established Program to Stimulate Competitive Research (EPSCoR). The PI will investigate the relationship between the algebraic structure of left orderable groups and the topological and dynamical properties of their actions on 1-manifolds and the cantor space. One goal is to investigate the class of finitely presented, infinite, simple groups, and exhibit new conceptual phenomena. This involves investigating notions such as uniform simplicity, and whether there is a finitely presented infinite simple group that acts on the real line by homeomorphisms. Finally, the PI will investigate a family of closely interconnected open problems emerging in combinatorial group theory. This includes a systematic study of normal generation in the class of finitely generated perfect groups, the conjectured existence of non-abelian free subgroups in non-indicable finitely generated left orderable groups, and fundamental groups of subcomplexes of aspherical 2-dimensional CW complexes.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
群是物理对象或理论空间对称性的数学抽象。群是数学中的基本对象,也出现在计算机科学和物理学等各种应用中。群的代数概念与一个集合联系在一起的是一个二元运算,如乘法,它满足一系列公理。群作为数学中各种具体或抽象空间的对称性自然出现。这些空间的几何性质与其对称群的代数性质之间存在着复杂的关系。PI将继续他对无限群体景观的研究,这些群体以数学中最自然的空间,圆和实线的对称性出现。PI将组织两个针对研究生的研究研讨会和两个针对本科生的研究体验项目。这些课程的目标应该是培养多样化的学生群体,使他们成为未来数学领域的领导者。这些活动将把计算方法融入到学生对无限群景观的数学探索中。该项目由拓扑学和促进竞争研究的既定计划(EPSCoR)共同资助。PI将研究左有序群的代数结构与它们在1流形和康托空间上的作用的拓扑和动力学性质之间的关系。一个目标是研究有限呈现的、无限的、简单群的类别,并展示新的概念现象。这包括研究一致简单性等概念,以及是否存在一个有限呈现的无限简单群,它通过同胚作用于实线上。最后,PI将研究组合群论中出现的一系列密切相关的开放问题。这包括系统地研究了有限生成的完美群的正规生成,非指示有限生成的左有序群中的非阿贝尔自由子群的存在性,以及非球面二维CW复的子复的基本群。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yash Lodha其他文献

Two new families of finitely generated simple groups of homeomorphisms of the real line
  • DOI:
    10.1016/j.jalgebra.2023.07.020
  • 发表时间:
    2023-12-01
  • 期刊:
  • 影响因子:
  • 作者:
    James Hyde;Yash Lodha;Cristóbal Rivas
  • 通讯作者:
    Cristóbal Rivas
Displacement techniques in bounded cohomology
  • DOI:
    10.1007/s00229-024-01604-9
  • 发表时间:
    2025-02-18
  • 期刊:
  • 影响因子:
    0.600
  • 作者:
    Caterina Campagnolo;Francesco Fournier-Facio;Yash Lodha;Marco Moraschini
  • 通讯作者:
    Marco Moraschini

Yash Lodha的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

同伦和Hodge理论的方法在Algebraic Cycle中的应用
  • 批准号:
    11171234
  • 批准年份:
    2011
  • 资助金额:
    40.0 万元
  • 项目类别:
    面上项目

相似海外基金

Class numbers and discriminants: algebraic and analytic number theory meet
类数和判别式:代数和解析数论的结合
  • 批准号:
    DP240100186
  • 财政年份:
    2024
  • 资助金额:
    $ 55.3万
  • 项目类别:
    Discovery Projects
Geometry of analytic and algebraic varieties
解析几何和代数簇
  • 批准号:
    2301374
  • 财政年份:
    2023
  • 资助金额:
    $ 55.3万
  • 项目类别:
    Standard Grant
Research on p-adic analytic cohomology of algebraic varieties and application to number theory
代数簇的p-adic解析上同调研究及其在数论中的应用
  • 批准号:
    22K13899
  • 财政年份:
    2022
  • 资助金额:
    $ 55.3万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Analytic and Algebraic Methods in Discrete Geometry
离散几何中的解析和代数方法
  • 批准号:
    2127650
  • 财政年份:
    2021
  • 资助金额:
    $ 55.3万
  • 项目类别:
    Continuing Grant
Analytic and Algebraic Methods in Discrete Geometry
离散几何中的解析和代数方法
  • 批准号:
    1953946
  • 财政年份:
    2020
  • 资助金额:
    $ 55.3万
  • 项目类别:
    Continuing Grant
Tropical and nonarchimedean analytic methods in algebraic geometry
代数几何中的热带和非阿基米德解析方法
  • 批准号:
    2001502
  • 财政年份:
    2020
  • 资助金额:
    $ 55.3万
  • 项目类别:
    Continuing Grant
Model Theory: Connecting Algebraic, Analytic, and Diophantine Geometry Through Definability
模型理论:通过可定义性连接代数、解析和丢番图几何
  • 批准号:
    1800492
  • 财政年份:
    2018
  • 资助金额:
    $ 55.3万
  • 项目类别:
    Continuing Grant
Tropical and Non-Archimedean Analytic Methods in Algebraic Geometry
代数几何中的热带和非阿基米德解析方法
  • 批准号:
    1901840
  • 财政年份:
    2018
  • 资助金额:
    $ 55.3万
  • 项目类别:
    Continuing Grant
Non-Commutative Stochastic Independence: Algebraic and Analytic Aspects
非交换随机独立性:代数和分析方面
  • 批准号:
    397960675
  • 财政年份:
    2018
  • 资助金额:
    $ 55.3万
  • 项目类别:
    Research Grants
Tropical and Non-Archimedean Analytic Methods in Algebraic Geometry
代数几何中的热带和非阿基米德解析方法
  • 批准号:
    1702428
  • 财政年份:
    2017
  • 资助金额:
    $ 55.3万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了