Exploring nanowire structures for quantum information - a route to discoveries and new technological applications
探索量子信息的纳米线结构——发现和新技术应用的途径
基本信息
- 批准号:RGPIN-2018-05109
- 负责人:
- 金额:$ 2.99万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2019
- 资助国家:加拿大
- 起止时间:2019-01-01 至 2020-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Classical computers (CC) use classical physics to encode information in binary bits while quantum computers rely on the laws of quantum mechanics (QM) to process information in qubits qubits may simultaneously be in two states due to superposition, and many such qubits can form strongly correlated systems through entanglement, behaving as a single system. Such QM systems are inherently more powerful than CCs, and with sufficiently large numbers of qubits, can solve problems that are intractable with CCs. The search for a perfect platform that simultaneously satisfies requirements of fast quantum control, long coherence times and scalability to thousands of qubits remains a topic of considerable interest. Recently, a new platform based on semiconductor (S) nanowire (NW) heterostructures (HS) has emerged, with qubits showing the fastest electrical spin manipulation times for single spins in QDs. Moreover, the first signatures of Majorana fermions (MFs), which are their own antiparticles and represent the building blocks for topological qubits, have been very recently reported in such NWs. However, these systems are still in their infancy and typically only function in dilution fridge temperatures. NW HS bring: (a) a virtually unlimited choice of materials for both radial and longitudinal HSs as strain may be relieved by unconfined deformation as they grow, and (b) multiple local metal or superconductor (SC) gates may be defined, together with a global back-gate, to provide scalable qubit systems. This proposal examines NW-based schemes addressing shortcomings of current schemes for a scalable QC platform. MF based qubits, through topological protection, should be virtually immune to environment-based decoherence. However, to host them, ballistic (B) NW HS are key - an area where we have demonstrated control over surface state occupation and backscattering to yield state of the art B-NWs; with sufficient quality B-NWs, long thin NWs can be used to enhance immunity. We propose to harness our recent first reports on proximitized SC with high temperature SCs (HTSC), to potentially bring the technology to near-LN2 temperatures something quite new. Next we will explore scalable systems which can be extended into multi-qubit systems. We will also explore the novel possibility of using HTSC/NW-HS systems for gate controlled radiative emission (and two-photon absorption) of entangled photon pairs at elevated temperatures such devices could provide the means to implement “flying” qubits for scalable quantum processing application. We will also explore an alternative platform for dense qubit registers based on self-assembled electron lattices known as the incipient Wigner lattice. This state with entangled e' (spin antiparallel) pairing, can be explored for its' potential for information transmission, computation and memory.
经典计算机(CC)使用经典物理将信息编码为二进制位,而量子计算机依靠量子力学定律(QM)以量子位处理信息,量子位由于叠加可能同时处于两种状态,并且许多这样的量子位可以通过纠缠形成强相关系统,表现为单个系统。这样的QM系统本质上比cc更强大,并且有足够大的量子位,可以解决cc难以解决的问题。寻找一个完美的平台,同时满足快速量子控制、长相干时间和数千量子位的可扩展性的要求,仍然是一个相当有趣的话题。最近,一种基于半导体(S)纳米线(NW)异质结构(HS)的新平台出现了,量子比特显示了量子点中单自旋的最快电自旋操作时间。此外,马约拉纳费米子(MFs)的第一个特征(MFs是它们自己的反粒子,代表拓扑量子比特的构建块)最近在这样的NWs中被报道。然而,这些系统仍处于起步阶段,通常只在稀释冰箱温度下起作用。NW HS带来:(a)径向和纵向HS的材料选择几乎是无限的,因为随着它们的生长,应变可以通过无限制的变形来缓解;(b)可以定义多个局部金属或超导体(SC)门,以及全局后门,以提供可扩展的量子比特系统。本提案研究了基于nw的方案,解决了当前可扩展QC平台方案的缺点。基于MF的量子比特,通过拓扑保护,应该几乎不受基于环境的退相干的影响。然而,为了容纳它们,弹道(B) NW HS是关键-我们已经证明了对表面状态占用和后向散射的控制,以产生最先进的B- nws;有足够质量的B-NWs,长而薄的NWs可以用来增强免疫力。我们建议利用我们最近关于高温SC (HTSC)的近似SC的第一份报告,有可能将该技术带到接近ln2的温度,这是一种相当新的技术。接下来我们将探索可扩展的系统,它可以扩展到多量子位系统。我们还将探索在高温下使用HTSC/NW-HS系统进行纠缠光子对的门控辐射发射(和双光子吸收)的新可能性,这些设备可以为可扩展量子处理应用提供实现“飞行”量子比特的手段。我们还将探索一种基于自组装电子晶格(称为早期维格纳晶格)的致密量子比特寄存器的替代平台。这种纠缠态具有反平行自旋对,可用于信息传输、计算和存储。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ruda, Harry其他文献
Ruda, Harry的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ruda, Harry', 18)}}的其他基金
Exploring nanowire structures for quantum information - a route to discoveries and new technological applications
探索量子信息的纳米线结构——发现和新技术应用的途径
- 批准号:
RGPIN-2018-05109 - 财政年份:2022
- 资助金额:
$ 2.99万 - 项目类别:
Discovery Grants Program - Individual
Controlled optical response of metallo-dielectric interfaces through the use of nanoparticles
通过使用纳米颗粒控制金属-介电界面的光学响应
- 批准号:
555429-2020 - 财政年份:2021
- 资助金额:
$ 2.99万 - 项目类别:
Alliance Grants
Hybrid nanostructured photoanodes for photoelectrochemical determination of chemical oxygen demand
用于光电化学测定化学需氧量的混合纳米结构光阳极
- 批准号:
549206-2019 - 财政年份:2021
- 资助金额:
$ 2.99万 - 项目类别:
Alliance Grants
Exploring nanowire structures for quantum information - a route to discoveries and new technological applications
探索量子信息的纳米线结构——发现和新技术应用的途径
- 批准号:
RGPIN-2018-05109 - 财政年份:2021
- 资助金额:
$ 2.99万 - 项目类别:
Discovery Grants Program - Individual
Shingled and Bifacial Photovoltaic Module Designs for High Performance
高性能叠瓦和双面光伏组件设计
- 批准号:
549209-2019 - 财政年份:2021
- 资助金额:
$ 2.99万 - 项目类别:
Alliance Grants
Investigation of Nanoengineered III-V Buffer Layers for Hetero-integration on Silicon
用于硅异质集成的纳米工程 III-V 族缓冲层的研究
- 批准号:
552127-2020 - 财政年份:2021
- 资助金额:
$ 2.99万 - 项目类别:
Alliance Grants
Intelligent optical spectroscopy and illumination system for plant health monitoring and growth optimisation
用于植物健康监测和生长优化的智能光谱和照明系统
- 批准号:
537805-2018 - 财政年份:2021
- 资助金额:
$ 2.99万 - 项目类别:
Collaborative Research and Development Grants
Exploring nanowire structures for quantum information - a route to discoveries and new technological applications
探索量子信息的纳米线结构——发现和新技术应用的途径
- 批准号:
RGPIN-2018-05109 - 财政年份:2020
- 资助金额:
$ 2.99万 - 项目类别:
Discovery Grants Program - Individual
Investigation of Nanoengineered III-V Buffer Layers for Hetero-integration on Silicon
用于硅异质集成的纳米工程 III-V 族缓冲层的研究
- 批准号:
552127-2020 - 财政年份:2020
- 资助金额:
$ 2.99万 - 项目类别:
Alliance Grants
Controlled optical response of metallo-dielectric interfaces through the use of nanoparticles
通过使用纳米颗粒控制金属-介电界面的光学响应
- 批准号:
555429-2020 - 财政年份:2020
- 资助金额:
$ 2.99万 - 项目类别:
Alliance Grants
相似国自然基金
Next Generation Majorana Nanowire Hybrids
- 批准号:
- 批准年份:2020
- 资助金额:20 万元
- 项目类别:
基于电子显微镜的一维纳米材料力电学的原位测量系统
- 批准号:50801009
- 批准年份:2008
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Exploring nanowire structures for quantum information - a route to discoveries and new technological applications
探索量子信息的纳米线结构——发现和新技术应用的途径
- 批准号:
RGPIN-2018-05109 - 财政年份:2022
- 资助金额:
$ 2.99万 - 项目类别:
Discovery Grants Program - Individual
Exploring nanowire structures for quantum information - a route to discoveries and new technological applications
探索量子信息的纳米线结构——发现和新技术应用的途径
- 批准号:
RGPIN-2018-05109 - 财政年份:2021
- 资助金额:
$ 2.99万 - 项目类别:
Discovery Grants Program - Individual
Exploring nanowire structures for quantum information - a route to discoveries and new technological applications
探索量子信息的纳米线结构——发现和新技术应用的途径
- 批准号:
RGPIN-2018-05109 - 财政年份:2020
- 资助金额:
$ 2.99万 - 项目类别:
Discovery Grants Program - Individual
RAPID: Silver and Copper-based Nanowire Structures for Antiviral Applications
RAPID:用于抗病毒应用的银基和铜基纳米线结构
- 批准号:
2028542 - 财政年份:2020
- 资助金额:
$ 2.99万 - 项目类别:
Standard Grant
Impact of surface modification on charge carrier transport in axial GaAs nanowire structures
表面改性对轴向 GaAs 纳米线结构中载流子传输的影响
- 批准号:
403523188 - 财政年份:2018
- 资助金额:
$ 2.99万 - 项目类别:
Research Grants
Exploring nanowire structures for quantum information - a route to discoveries and new technological applications
探索量子信息的纳米线结构——发现和新技术应用的途径
- 批准号:
RGPIN-2018-05109 - 财政年份:2018
- 资助金额:
$ 2.99万 - 项目类别:
Discovery Grants Program - Individual
OP: Towards high performance nanowire photonic devices: Novel testing techniques and device structures
OP:迈向高性能纳米线光子器件:新颖的测试技术和器件结构
- 批准号:
1608714 - 财政年份:2016
- 资助金额:
$ 2.99万 - 项目类别:
Standard Grant
High Throughput Manufacturing of Carbide Nanowire-Carbon Microfiber Hybrid Structures and Polymer Composites from Cotton Textiles
利用棉纺织品高通量制造碳化物纳米线-碳微纤维混合结构和聚合物复合材料
- 批准号:
1418696 - 财政年份:2013
- 资助金额:
$ 2.99万 - 项目类别:
Standard Grant
Growth and characterization of semiconductor nanowire structures formed by closely stacked self-assembled quantum dots
紧密堆叠的自组装量子点形成的半导体纳米线结构的生长和表征
- 批准号:
25870885 - 财政年份:2013
- 资助金额:
$ 2.99万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Theoretical investigations of surface modifications and doping of semiconductor nanowire structures
半导体纳米线结构表面修饰和掺杂的理论研究
- 批准号:
213674385 - 财政年份:2012
- 资助金额:
$ 2.99万 - 项目类别:
Research Units