Towards Integrative Data Analysis for Predictive Modeling in Biomedical Computing

生物医学计算中预测建模的综合数据分析

基本信息

  • 批准号:
    RGPIN-2015-06051
  • 负责人:
  • 金额:
    $ 3.13万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2019
  • 资助国家:
    加拿大
  • 起止时间:
    2019-01-01 至 2020-12-31
  • 项目状态:
    已结题

项目摘要

This research is aimed at developing innovative methods to analyze medical data and understand the mechanisms of actions of complex disease, specifically prostate cancer (PCa). The new era of large-scale biology is characterized by insurmountable amounts of data including medical images, high throughput genetic information, large public databases, and clinical signals. Data abundance stands in contrast to our limited knowledge about the biological events underlying disease. The proposed research seeks to close this gap through a novel framework that uses state-of-the-art image analysis methods, and integrates molecular data and biological information, to formulate more accurate models to characterize cancer.****Although PCa is the third leading cancer-related cause of death in North American men, if diagnosed early, it can be managed with a 90% long-term disease free survival rate. Diagnosis of PCa requires biopsy, guided by ultrasound. However, ultrasound guidance is not tailored to an individual and has poor sensitivity in detection of cancer, specifically its aggressive forms. There is an urgent need to clearly distinguish between aggressive PCa that requires intervention and indolent PCa that can be put on "watchful waiting". The algorithms developed here will address this challenge by i) augmenting ultrasound images with information from probability maps indicating the aggressiveness of cancer, ii) comprehensive analysis of molecular information to stratify disease outcome; and iii) integration of features at multiple resolutions of data to build a comprehensive model of PCa.****The unparalleled methods for acquisition and analysis of ultrasound signals provide enhanced prediction of the existence and extent of PCa. The innovative models formulated by integration of features of multiple modalities facilitate the discovery of personalized therapies and biopsies. The methods and software built will help the clinicians make better management decisions for PCa to reduce its mortality while balancing it against the risks of unnecessary overtreatment. The computational methods sought will advance research in image and signal processing, machine learning, systems biology and software engineering. Methods are discussed in the framework of Pca; however, they are extendible to other disorders. ****Training of highly qualified personnel is a primary focus of this work; three PhD and three Master's students, as well as five summer undergraduates will be involved in this research program.**
本研究旨在开发创新的方法来分析医学数据和了解复杂疾病的作用机制,特别是前列腺癌(PCa)。大规模生物学的新时代的特点是不可逾越的数据量,包括医学图像、高通量遗传信息、大型公共数据库和临床信号。数据的丰富与我们对潜在疾病的生物学事件的有限知识形成对比。拟议的研究旨在通过一个新的框架来缩小这一差距,该框架使用最先进的图像分析方法,并整合分子数据和生物信息,以制定更准确的模型来表征癌症。****虽然前列腺癌是北美男性死亡的第三大癌症相关原因,但如果早期诊断,它可以获得90%的长期无病生存率。前列腺癌的诊断需要在超声引导下进行活检。然而,超声引导并不是为个人量身定制的,而且在检测癌症,特别是其侵袭性形式方面的敏感性很差。迫切需要明确区分需要干预的侵袭性前列腺癌和可以“观察等待”的惰性前列腺癌。本文开发的算法将通过以下方式解决这一挑战:i)利用表明癌症侵袭性的概率图信息增强超声图像;ii)对分子信息进行综合分析,对疾病结果进行分层;iii)整合多分辨率数据的特征,构建PCa综合模型。****无与伦比的超声信号采集和分析方法为PCa的存在和程度提供了增强的预测。通过整合多种模式的特点制定的创新模型促进了个性化治疗和活检的发现。所建立的方法和软件将帮助临床医生对PCa做出更好的管理决策,以降低其死亡率,同时平衡其与不必要的过度治疗的风险。所寻求的计算方法将推进图像和信号处理、机器学习、系统生物学和软件工程的研究。在主成分分析的框架下讨论了方法;然而,它们可以扩展到其他疾病。****培训高素质人员是这项工作的主要重点;本研究项目将招收博士生3名、硕士生3名、暑期本科生5名

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Mousavi, Parvin其他文献

SimITK: Visual Programming of the ITK Image-Processing Library within Simulink
  • DOI:
    10.1007/s10278-013-9667-7
  • 发表时间:
    2014-04-01
  • 期刊:
  • 影响因子:
    4.4
  • 作者:
    Dickinson, Andrew W. L.;Abolmaesumi, Purang;Mousavi, Parvin
  • 通讯作者:
    Mousavi, Parvin
A deep learning approach for real time prostate segmentation in freehand ultrasound guided biopsy
  • DOI:
    10.1016/j.media.2018.05.010
  • 发表时间:
    2018-08-01
  • 期刊:
  • 影响因子:
    10.9
  • 作者:
    Abu Anas, Emran Mohammad;Mousavi, Parvin;Abolmaesumi, Purang
  • 通讯作者:
    Abolmaesumi, Purang
Tissue Classification Using Ultrasound-Induced Variations in Acoustic Backscattering Features
  • DOI:
    10.1109/tbme.2012.2224111
  • 发表时间:
    2013-02-01
  • 期刊:
  • 影响因子:
    4.6
  • 作者:
    Daoud, Mohammad I.;Mousavi, Parvin;Abolmaesumi, Purang
  • 通讯作者:
    Abolmaesumi, Purang
Biomechanically constrained groupwise ultrasound to CT registration of the lumbar spine
  • DOI:
    10.1016/j.media.2010.07.008
  • 发表时间:
    2012-04-01
  • 期刊:
  • 影响因子:
    10.9
  • 作者:
    Gill, Sean;Abolmaesumi, Purang;Mousavi, Parvin
  • 通讯作者:
    Mousavi, Parvin
Augmenting Detection of Prostate Cancer in Transrectal Ultrasound Images Using SVM and RF Time Series

Mousavi, Parvin的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Mousavi, Parvin', 18)}}的其他基金

Learning Algorithms for Predictive Modeling in Biomedical Computing: Methods and Applications
生物医学计算中预测建模的学习算法:方法与应用
  • 批准号:
    RGPIN-2020-07117
  • 财政年份:
    2022
  • 资助金额:
    $ 3.13万
  • 项目类别:
    Discovery Grants Program - Individual
Learning Algorithms for Predictive Modeling in Biomedical Computing: Methods and Applications
生物医学计算中预测建模的学习算法:方法与应用
  • 批准号:
    RGPIN-2020-07117
  • 财政年份:
    2021
  • 资助金额:
    $ 3.13万
  • 项目类别:
    Discovery Grants Program - Individual
CREATE Training Program in Medical Informatics: Preparing Canada's Workforce for Health Data of Tomorrow
创建医疗信息学培训计划:让加拿大劳动力为明天的健康数据做好准备
  • 批准号:
    555366-2021
  • 财政年份:
    2021
  • 资助金额:
    $ 3.13万
  • 项目类别:
    Collaborative Research and Training Experience
An integrated spectroscopy-ultrasound surgical navigation system for residual cancer detection in breast surgery.
用于乳腺手术中残留癌症检测的集成光谱超声手术导航系统。
  • 批准号:
    538824-2019
  • 财政年份:
    2020
  • 资助金额:
    $ 3.13万
  • 项目类别:
    Collaborative Health Research Projects
Learning Algorithms for Predictive Modeling in Biomedical Computing: Methods and Applications
生物医学计算中预测建模的学习算法:方法与应用
  • 批准号:
    RGPIN-2020-07117
  • 财政年份:
    2020
  • 资助金额:
    $ 3.13万
  • 项目类别:
    Discovery Grants Program - Individual
An integrated spectroscopy-ultrasound surgical navigation system for residual cancer detection in breast surgery.
用于乳腺手术中残留癌症检测的集成光谱超声手术导航系统。
  • 批准号:
    538824-2019
  • 财政年份:
    2019
  • 资助金额:
    $ 3.13万
  • 项目类别:
    Collaborative Health Research Projects
Towards Integrative Data Analysis for Predictive Modeling in Biomedical Computing
生物医学计算中预测建模的综合数据分析
  • 批准号:
    RGPIN-2015-06051
  • 财政年份:
    2018
  • 资助金额:
    $ 3.13万
  • 项目类别:
    Discovery Grants Program - Individual
A system for multi-parametric real-time analysis of tissue properties
组织特性多参数实时分析系统
  • 批准号:
    RTI-2018-00887
  • 财政年份:
    2017
  • 资助金额:
    $ 3.13万
  • 项目类别:
    Research Tools and Instruments
Towards Integrative Data Analysis for Predictive Modeling in Biomedical Computing
生物医学计算中预测建模的综合数据分析
  • 批准号:
    RGPIN-2015-06051
  • 财政年份:
    2017
  • 资助金额:
    $ 3.13万
  • 项目类别:
    Discovery Grants Program - Individual
RF Time Series Flashlight for Targeted Prostate Biopsy
用于靶向前列腺活检的射频时间序列手电筒
  • 批准号:
    462493-2014
  • 财政年份:
    2016
  • 资助金额:
    $ 3.13万
  • 项目类别:
    Collaborative Health Research Projects

相似国自然基金

建立integrative分析新策略挖掘肺腺癌致癌相关关键分子
  • 批准号:
    31801123
  • 批准年份:
    2018
  • 资助金额:
    17.0 万元
  • 项目类别:
    青年科学基金项目
Chinese Journal of Integrative Medicine
  • 批准号:
    81224004
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Journal of Integrative Plant Biology
  • 批准号:
    31024801
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目

相似海外基金

Towards Integrative Data Analysis for Predictive Modeling in Biomedical Computing
生物医学计算中预测建模的综合数据分析
  • 批准号:
    RGPIN-2015-06051
  • 财政年份:
    2018
  • 资助金额:
    $ 3.13万
  • 项目类别:
    Discovery Grants Program - Individual
Towards Integrative Data Analysis for Predictive Modeling in Biomedical Computing
生物医学计算中预测建模的综合数据分析
  • 批准号:
    RGPIN-2015-06051
  • 财政年份:
    2017
  • 资助金额:
    $ 3.13万
  • 项目类别:
    Discovery Grants Program - Individual
"Lots Of Data, Little Information": Beyond Environmental Assessment And Towards The Next Generation Of Integrative Cumulative Impact Assessment
“数据多,信息少”:超越环境评估,迈向下一代综合累积影响评估
  • 批准号:
    352499
  • 财政年份:
    2016
  • 资助金额:
    $ 3.13万
  • 项目类别:
Towards Integrative Data Analysis for Predictive Modeling in Biomedical Computing
生物医学计算中预测建模的综合数据分析
  • 批准号:
    RGPIN-2015-06051
  • 财政年份:
    2016
  • 资助金额:
    $ 3.13万
  • 项目类别:
    Discovery Grants Program - Individual
Towards Integrative Data Analysis for Predictive Modeling in Biomedical Computing
生物医学计算中预测建模的综合数据分析
  • 批准号:
    RGPIN-2015-06051
  • 财政年份:
    2015
  • 资助金额:
    $ 3.13万
  • 项目类别:
    Discovery Grants Program - Individual
Towards integrative data analysis for predictive modeling in biomedical computing
生物医学计算中预测建模的综合数据分析
  • 批准号:
    298230-2010
  • 财政年份:
    2014
  • 资助金额:
    $ 3.13万
  • 项目类别:
    Discovery Grants Program - Individual
Digitisation / Cataloguing of non-textual objects: Towards an integrative and comprehensive standard for meta-omics data of collection objects (MOD-CO)
非文本对象的数字化/编目:建立集合对象元组学数据的综合综合标准(MOD-CO)
  • 批准号:
    248069971
  • 财政年份:
    2014
  • 资助金额:
    $ 3.13万
  • 项目类别:
    Cataloguing and Digitisation (Scientific Library Services and Information Systems)
Towards integrative data analysis for predictive modeling in biomedical computing
生物医学计算中预测建模的综合数据分析
  • 批准号:
    298230-2010
  • 财政年份:
    2013
  • 资助金额:
    $ 3.13万
  • 项目类别:
    Discovery Grants Program - Individual
Towards integrative data analysis for predictive modeling in biomedical computing
生物医学计算中预测建模的综合数据分析
  • 批准号:
    298230-2010
  • 财政年份:
    2012
  • 资助金额:
    $ 3.13万
  • 项目类别:
    Discovery Grants Program - Individual
Towards integrative data analysis for predictive modeling in biomedical computing
生物医学计算中预测建模的综合数据分析
  • 批准号:
    298230-2010
  • 财政年份:
    2011
  • 资助金额:
    $ 3.13万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了