Big Data Fusion

大数据融合

基本信息

  • 批准号:
    RGPIN-2015-04938
  • 负责人:
  • 金额:
    $ 3.42万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2019
  • 资助国家:
    加拿大
  • 起止时间:
    2019-01-01 至 2020-12-31
  • 项目状态:
    已结题

项目摘要

Data fusion is a mechanism for the data acquired from multiple sources to be gathered and combined in a consistent way to obtain more reliable, less voluminous processed data in a timely manner. It is conventionally used in many sectors involving multiple sensors, such as defense and security, medical diagnostic and surgery, intelligent transportation systems. As we are moving into an era of data deluge, not only is the amount of data greatly increasing, but there is a wide variety of types of data sources, such as sensor measurements and recordings, and cyberspace (e.g. social networks). This incredible growth and availability of both structured and unstructured data causing problems in volume, velocity and variety is termed big data. Current data fusion techniques, however, cannot really handle the challenges posted by big data.****In this project, we propose a multi-disciplinary approach for big data fusion. We will combine approximation theory in computer science, complexity theory in physics, and distributed and sparse systems in signal processing to develop novel methods for fusing massive amounts of data. In particular, we will focus on the three basic components of data fusion: registration, association and fusion. We propose using system sparseness and motion dynamic to develop a new registration model to align a large amount of devices. To associate or correlate the data, we will develop an approximate multi-frame nearest neighbor data association to speed up the association process and use complex networks to extract the deep correlations in the cyberspace to determine honest relationships. Since big data takes on a variety of formats, we propose to develop a universal data fusion based on first- and second- order statistics to provide a close-to-optimal data fusion.***The proposed research will focus on applications in three important industries: energy, wireless communications and the environment. The proposed research does not only develop fundamental data and signal processing algorithms for big data, but it also makes data fusion applicable to areas that will eventually involve big data. The big data industry is worth more than $100 billion and growing at 10% a year. By 2018, the United States alone could face a shortage of about 170,000 people in this area. The proposed research will prepare talented people for the rapidly growing market.**
数据融合是一种将从多个来源获取的数据以一致的方式收集和组合的机制,以便及时获得更可靠、处理量更少的数据。它通常用于涉及多个传感器的许多领域,例如国防和安全、医疗诊断和手术、智能交通系统。随着我们进入数据洪流时代,不仅数据量大幅增加,而且数据源的类型也多种多样,例如传感器测量和记录以及网络空间(例如社交网络)。结构化和非结构化数据的令人难以置信的增长和可用性导致了数量、速度和多样性方面的问题,这被称为大数据。然而,当前的数据融合技术无法真正应对大数据带来的挑战。****在这个项目中,我们提出了一种用于大数据融合的多学科方法。我们将结合计算机科学中的近似理论、物理学中的复杂性理论以及信号处理中的分布式和稀疏系统,开发融合大量数据的新方法。特别是,我们将重点关注数据融合的三个基本组成部分:注册、关联和融合。我们建议使用系统稀疏性和运动动态来开发新的配准模型来对齐大量设备。为了关联或关联数据,我们将开发近似多帧最近邻数据关联以加速关联过程,并使用复杂网络提取网络空间中的深层关联以确定诚实关系。由于大数据具有多种格式,我们建议开发一种基于一阶和二阶统计的通用数据融合,以提供接近最优的数据融合。***拟议的研究将重点关注三个重要行业的应用:能源、无线通信和环境。该研究不仅开发了大数据的基础数据和信号处理算法,而且使数据融合适用于最终涉及大数据的领域。大数据产业价值超过1000亿美元,并且以每年10%的速度增长。到2018年,仅美国就可能面临该领域约17万人的短缺。拟议的研究将为快速增长的市场培养人才。**

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Leung, Henry其他文献

A Multi-Bit Identification Protocol for RFID Tag Reading
一种用于 RFID 标签读取的多位识别协议
  • DOI:
    10.1109/jsen.2013.2272460
  • 发表时间:
    2013-07
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Liu, Yi;Leung, Henry;Chen, Rongling;Li, An
  • 通讯作者:
    Li, An
Structure-Aware Compressive Sensing for Magnetic Flux Leakage Detectors: Theory and Experimental Validation
A variational Bayesian approach to robust sensor fusion based on Student-t distribution
  • DOI:
    10.1016/j.ins.2012.09.017
  • 发表时间:
    2013-02-01
  • 期刊:
  • 影响因子:
    8.1
  • 作者:
    Zhu, Hao;Leung, Henry;He, Zhongshi
  • 通讯作者:
    He, Zhongshi
A Deep and Scalable Unsupervised Machine Learning System for Cyber-Attack Detection in Large-Scale Smart Grids
  • DOI:
    10.1109/access.2019.2920326
  • 发表时间:
    2019-01-01
  • 期刊:
  • 影响因子:
    3.9
  • 作者:
    Karimipour, Hadis;Dehghantanha, Ali;Leung, Henry
  • 通讯作者:
    Leung, Henry
Multitarget Detection and Tracking for Through-the-Wall Radars

Leung, Henry的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Leung, Henry', 18)}}的其他基金

Generative Signal Processing and Data Fusion for Sensor Networks
传感器网络的生成信号处理和数据融合
  • 批准号:
    RGPIN-2020-04563
  • 财政年份:
    2022
  • 资助金额:
    $ 3.42万
  • 项目类别:
    Discovery Grants Program - Individual
Generative Signal Processing and Data Fusion for Sensor Networks
传感器网络的生成信号处理和数据融合
  • 批准号:
    DGDND-2020-04563
  • 财政年份:
    2022
  • 资助金额:
    $ 3.42万
  • 项目类别:
    DND/NSERC Discovery Grant Supplement
Generative Signal Processing and Data Fusion for Sensor Networks
传感器网络的生成信号处理和数据融合
  • 批准号:
    DGDND-2020-04563
  • 财政年份:
    2021
  • 资助金额:
    $ 3.42万
  • 项目类别:
    DND/NSERC Discovery Grant Supplement
Generative Signal Processing and Data Fusion for Sensor Networks
传感器网络的生成信号处理和数据融合
  • 批准号:
    RGPIN-2020-04563
  • 财政年份:
    2021
  • 资助金额:
    $ 3.42万
  • 项目类别:
    Discovery Grants Program - Individual
Data Exploitation and processing for multi-sensor radar big data
多传感器雷达大数据的数据开发和处理
  • 批准号:
    499426-2016
  • 财政年份:
    2020
  • 资助金额:
    $ 3.42万
  • 项目类别:
    Department of National Defence / NSERC Research Partnership
Generative Signal Processing and Data Fusion for Sensor Networks
传感器网络的生成信号处理和数据融合
  • 批准号:
    DGDND-2020-04563
  • 财政年份:
    2020
  • 资助金额:
    $ 3.42万
  • 项目类别:
    DND/NSERC Discovery Grant Supplement
Generative Signal Processing and Data Fusion for Sensor Networks
传感器网络的生成信号处理和数据融合
  • 批准号:
    RGPIN-2020-04563
  • 财政年份:
    2020
  • 资助金额:
    $ 3.42万
  • 项目类别:
    Discovery Grants Program - Individual
Information fusion approach for anomaly detection in big data
大数据异常检测的信息融合方法
  • 批准号:
    506690-2017
  • 财政年份:
    2019
  • 资助金额:
    $ 3.42万
  • 项目类别:
    Strategic Projects - Group
Data Exploitation and processing for multi-sensor radar big data
多传感器雷达大数据的数据开发和处理
  • 批准号:
    499426-2016
  • 财政年份:
    2019
  • 资助金额:
    $ 3.42万
  • 项目类别:
    Department of National Defence / NSERC Research Partnership
Information fusion approach for anomaly detection in big data
大数据异常检测的信息融合方法
  • 批准号:
    506690-2017
  • 财政年份:
    2018
  • 资助金额:
    $ 3.42万
  • 项目类别:
    Strategic Projects - Group

相似国自然基金

Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    合作创新研究团队
Data-driven Recommendation System Construction of an Online Medical Platform Based on the Fusion of Information
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国青年学者研究基金项目
Development of a Linear Stochastic Model for Wind Field Reconstruction from Limited Measurement Data
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    40 万元
  • 项目类别:
基于Linked Open Data的Web服务语义互操作关键技术
  • 批准号:
    61373035
  • 批准年份:
    2013
  • 资助金额:
    77.0 万元
  • 项目类别:
    面上项目
Molecular Interaction Reconstruction of Rheumatoid Arthritis Therapies Using Clinical Data
  • 批准号:
    31070748
  • 批准年份:
    2010
  • 资助金额:
    34.0 万元
  • 项目类别:
    面上项目
高维数据的函数型数据(functional data)分析方法
  • 批准号:
    11001084
  • 批准年份:
    2010
  • 资助金额:
    16.0 万元
  • 项目类别:
    青年科学基金项目
染色体复制负调控因子datA在细胞周期中的作用
  • 批准号:
    31060015
  • 批准年份:
    2010
  • 资助金额:
    25.0 万元
  • 项目类别:
    地区科学基金项目
Computational Methods for Analyzing Toponome Data
  • 批准号:
    60601030
  • 批准年份:
    2006
  • 资助金额:
    17.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Mining, Fusion and Modeling of Truck Big Data for the development of Agent-Based Microsimulation Models
卡车大数据的挖掘、融合和建模,用于开发基于代理的微观仿真模型
  • 批准号:
    RGPIN-2017-05843
  • 财政年份:
    2022
  • 资助金额:
    $ 3.42万
  • 项目类别:
    Discovery Grants Program - Individual
Novel Learning-Based Visual Algorithms and Fusion Methods for High-Dimensional/Multi-Modality Big Data
基于学习的新型高维/多模态大数据视觉算法和融合方法
  • 批准号:
    RGPIN-2022-02948
  • 财政年份:
    2022
  • 资助金额:
    $ 3.42万
  • 项目类别:
    Discovery Grants Program - Individual
Mining, Fusion and Modeling of Truck Big Data for the development of Agent-Based Microsimulation Models
卡车大数据的挖掘、融合和建模,用于开发基于代理的微观仿真模型
  • 批准号:
    RGPIN-2017-05843
  • 财政年份:
    2021
  • 资助金额:
    $ 3.42万
  • 项目类别:
    Discovery Grants Program - Individual
Mining, Fusion and Modeling of Truck Big Data for the development of Agent-Based Microsimulation Models
卡车大数据的挖掘、融合和建模,用于开发基于代理的微观仿真模型
  • 批准号:
    RGPIN-2017-05843
  • 财政年份:
    2020
  • 资助金额:
    $ 3.42万
  • 项目类别:
    Discovery Grants Program - Individual
Development and evaluation of data fusion method for vegetation big data products observed by earth observation sensors
对地观测传感器观测植被大数据产品数据融合方法开发与评估
  • 批准号:
    20K12259
  • 财政年份:
    2020
  • 资助金额:
    $ 3.42万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Information fusion approach for anomaly detection in big data
大数据异常检测的信息融合方法
  • 批准号:
    506690-2017
  • 财政年份:
    2019
  • 资助金额:
    $ 3.42万
  • 项目类别:
    Strategic Projects - Group
Research on the fusion of informatics and political science using location based big data to achieve multicultural symbiotic societies
利用基于位置的大数据融合信息学和政治学以实现多元文化共生社会的研究
  • 批准号:
    19K22852
  • 财政年份:
    2019
  • 资助金额:
    $ 3.42万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Mining, Fusion and Modeling of Truck Big Data for the development of Agent-Based Microsimulation Models
卡车大数据的挖掘、融合和建模,用于开发基于代理的微观仿真模型
  • 批准号:
    RGPIN-2017-05843
  • 财政年份:
    2019
  • 资助金额:
    $ 3.42万
  • 项目类别:
    Discovery Grants Program - Individual
Information fusion approach for anomaly detection in big data
大数据异常检测的信息融合方法
  • 批准号:
    506690-2017
  • 财政年份:
    2018
  • 资助金额:
    $ 3.42万
  • 项目类别:
    Strategic Projects - Group
Mining, Fusion and Modeling of Truck Big Data for the development of Agent-Based Microsimulation Models
卡车大数据的挖掘、融合和建模,用于开发基于代理的微观仿真模型
  • 批准号:
    RGPIN-2017-05843
  • 财政年份:
    2018
  • 资助金额:
    $ 3.42万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了