Generative Signal Processing and Data Fusion for Sensor Networks
传感器网络的生成信号处理和数据融合
基本信息
- 批准号:RGPIN-2020-04563
- 负责人:
- 金额:$ 5.54万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2022
- 资助国家:加拿大
- 起止时间:2022-01-01 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The recent trends in analytics and interconnectivity between internet of things (IoT) and sensors is transforming industries such as personalized healthcare, agriculture, manufacturing, energy, and surveillance to process data autonomously to gather insight and make informed decisions with minimal delay. Market studies suggest the number of connected sensors is expected to reach 20.8 billion by 2020, and $6 trillion investment is predicted for the sensing market over the next 5 years. Although there exists development in sensor technologies aimed at increasing resolution and efficiency, cost and physical barriers may limit the practical sensor deployment. Due to sensing limitations, phenomena frequently cannot be observed completely due to various factors including sensor failures, sampling or resolution, interference, occlusions from objects, or visibility issues from weather or night-time. These missing information in space, time, and sensor modalities are barriers to real-time continuous sensing. This motivates the need for developing signal processing tools for the sensing picture without being limited by physical sensing constraints. We propose a generative signal processing and data fusion framework to push the boundaries of sensing. Our goal is to develop a unified set of technologies for three fundamental aspects of generative sensing and processing. We propose theoretical approaches and models to find solutions to missing signals, objects, and tracks. We will investigate algorithms for augmenting detection, tracking, and recognition processing tasks with generative signal processing and combine these processes. Finally, we propose an artificial sensor concept and data fusion approaches that will bridge the gap between artificial and real physical sensing. The research results in a framework to generate, process data at desired times, spatial locations, and selected sensor modalities. This will be publicly beneficial in sensing, as personalization and approaches will be developed to acquire desired information in cases where it may be currently expensive or limited. We verify applications in remote sensing, urban and pipeline monitoring with academic and industrial collaborators to drive future commercial technologies, develop next generation sensing for phenomena which cannot be sensed by conventional approaches. Benefits to Canada include a general approach to make eventual trends in continuous sensing more cost-effective, derived algorithms for applications like pipeline, acoustic monitoring for public safety, maritime or arctic monitoring. The research will enhance robustness of decision making in scenarios of sensing failure, to complement current physical sensors and enable continuous sensing.
物联网(IoT)和传感器之间的分析和互连的最新趋势正在改变个性化医疗保健,农业,制造业,能源和监控等行业,以自主处理数据,以最小的延迟收集洞察力并做出明智的决策。市场研究表明,到2020年,连接传感器的数量预计将达到208亿,预计未来5年传感市场的投资将达到6万亿美元。虽然存在旨在提高分辨率和效率的传感器技术的发展,但成本和物理障碍可能限制实际的传感器部署。由于传感限制,由于各种因素,包括传感器故障、采样或分辨率、干扰、物体遮挡或天气或夜间的能见度问题,现象经常无法完全观察到。空间、时间和传感器模态中的这些缺失信息是实时连续感测的障碍。这激发了开发用于感测图像的信号处理工具而不受物理感测约束的需要。我们提出了一个生成信号处理和数据融合框架,以推动传感的边界。我们的目标是为生成传感和处理的三个基本方面开发一套统一的技术。我们提出了理论方法和模型,以找到解决丢失的信号,对象和跟踪。我们将研究增强检测,跟踪和识别处理任务的算法与生成信号处理和联合收割机这些过程。最后,我们提出了一个人工传感器的概念和数据融合的方法,将弥合人工和真实的物理传感之间的差距差距。研究结果在一个框架中生成,处理数据在所需的时间,空间位置和选定的传感器模态。这将在传感方面对公众有益,因为将开发个性化和方法,以在目前可能昂贵或有限的情况下获取所需信息。我们与学术界和工业界合作者一起验证遥感、城市和管道监测的应用,以推动未来的商业技术,开发下一代传感技术,用于传统方法无法感知的现象。对加拿大的好处包括一种通用方法,使连续传感的最终趋势更具成本效益,用于管道、公共安全声学监测、海洋或北极监测等应用的衍生算法。该研究将增强感知故障场景中决策的鲁棒性,以补充当前的物理传感器并实现连续感知。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Leung, Henry其他文献
A Multi-Bit Identification Protocol for RFID Tag Reading
一种用于 RFID 标签读取的多位识别协议
- DOI:
10.1109/jsen.2013.2272460 - 发表时间:
2013-07 - 期刊:
- 影响因子:3.7
- 作者:
Liu, Yi;Leung, Henry;Chen, Rongling;Li, An - 通讯作者:
Li, An
Structure-Aware Compressive Sensing for Magnetic Flux Leakage Detectors: Theory and Experimental Validation
- DOI:
10.1109/tim.2020.3047503 - 发表时间:
2021-01-01 - 期刊:
- 影响因子:5.6
- 作者:
Najafabadi, Hamid Esmaeili;Leung, Henry;Gao, Wenshen - 通讯作者:
Gao, Wenshen
A variational Bayesian approach to robust sensor fusion based on Student-t distribution
- DOI:
10.1016/j.ins.2012.09.017 - 发表时间:
2013-02-01 - 期刊:
- 影响因子:8.1
- 作者:
Zhu, Hao;Leung, Henry;He, Zhongshi - 通讯作者:
He, Zhongshi
A Deep and Scalable Unsupervised Machine Learning System for Cyber-Attack Detection in Large-Scale Smart Grids
- DOI:
10.1109/access.2019.2920326 - 发表时间:
2019-01-01 - 期刊:
- 影响因子:3.9
- 作者:
Karimipour, Hadis;Dehghantanha, Ali;Leung, Henry - 通讯作者:
Leung, Henry
Multitarget Detection and Tracking for Through-the-Wall Radars
- DOI:
10.1109/taes.2014.120693 - 发表时间:
2014-04-01 - 期刊:
- 影响因子:4.4
- 作者:
Chen, Xiaoli;Leung, Henry;Tian, Mao - 通讯作者:
Tian, Mao
Leung, Henry的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Leung, Henry', 18)}}的其他基金
Generative Signal Processing and Data Fusion for Sensor Networks
传感器网络的生成信号处理和数据融合
- 批准号:
DGDND-2020-04563 - 财政年份:2022
- 资助金额:
$ 5.54万 - 项目类别:
DND/NSERC Discovery Grant Supplement
Generative Signal Processing and Data Fusion for Sensor Networks
传感器网络的生成信号处理和数据融合
- 批准号:
DGDND-2020-04563 - 财政年份:2021
- 资助金额:
$ 5.54万 - 项目类别:
DND/NSERC Discovery Grant Supplement
Generative Signal Processing and Data Fusion for Sensor Networks
传感器网络的生成信号处理和数据融合
- 批准号:
RGPIN-2020-04563 - 财政年份:2021
- 资助金额:
$ 5.54万 - 项目类别:
Discovery Grants Program - Individual
Data Exploitation and processing for multi-sensor radar big data
多传感器雷达大数据的数据开发和处理
- 批准号:
499426-2016 - 财政年份:2020
- 资助金额:
$ 5.54万 - 项目类别:
Department of National Defence / NSERC Research Partnership
Generative Signal Processing and Data Fusion for Sensor Networks
传感器网络的生成信号处理和数据融合
- 批准号:
DGDND-2020-04563 - 财政年份:2020
- 资助金额:
$ 5.54万 - 项目类别:
DND/NSERC Discovery Grant Supplement
Generative Signal Processing and Data Fusion for Sensor Networks
传感器网络的生成信号处理和数据融合
- 批准号:
RGPIN-2020-04563 - 财政年份:2020
- 资助金额:
$ 5.54万 - 项目类别:
Discovery Grants Program - Individual
Information fusion approach for anomaly detection in big data
大数据异常检测的信息融合方法
- 批准号:
506690-2017 - 财政年份:2019
- 资助金额:
$ 5.54万 - 项目类别:
Strategic Projects - Group
Big Data Fusion
大数据融合
- 批准号:
RGPIN-2015-04938 - 财政年份:2019
- 资助金额:
$ 5.54万 - 项目类别:
Discovery Grants Program - Individual
Data Exploitation and processing for multi-sensor radar big data
多传感器雷达大数据的数据开发和处理
- 批准号:
499426-2016 - 财政年份:2019
- 资助金额:
$ 5.54万 - 项目类别:
Department of National Defence / NSERC Research Partnership
Information fusion approach for anomaly detection in big data
大数据异常检测的信息融合方法
- 批准号:
506690-2017 - 财政年份:2018
- 资助金额:
$ 5.54万 - 项目类别:
Strategic Projects - Group
相似国自然基金
一种检测结核分枝杆菌抗原标志物的方法学研究——基于signal-on型电化学适体检测体系的构建及应用
- 批准号:81601856
- 批准年份:2016
- 资助金额:17.0 万元
- 项目类别:青年科学基金项目
Apoptosis signal-regulating kinase 1是七氟烷抑制小胶质细胞活化的关键分子靶点?
- 批准号:81301123
- 批准年份:2013
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
相似海外基金
SBIR Phase I: Lightweight Learning-based Camera Image Signal Processing (ISP) for Photon-Limited Imaging
SBIR 第一阶段:用于光子限制成像的轻量级基于学习的相机图像信号处理 (ISP)
- 批准号:
2335309 - 财政年份:2024
- 资助金额:
$ 5.54万 - 项目类别:
Standard Grant
CAREER: Radio Frequency Piezoelectric Acoustic Microsystems for Efficient and Adaptive Front-End Signal Processing
职业:用于高效和自适应前端信号处理的射频压电声学微系统
- 批准号:
2339731 - 财政年份:2024
- 资助金额:
$ 5.54万 - 项目类别:
Continuing Grant
Quantum reservoir computing for efficient signal processing
用于高效信号处理的量子存储计算
- 批准号:
10108296 - 财政年份:2024
- 资助金额:
$ 5.54万 - 项目类别:
EU-Funded
CIF: Small: Signal Processing and Learning for NOMA Millimeter-Wave Massive MIMO Systems
CIF:小型:NOMA 毫米波大规模 MIMO 系统的信号处理和学习
- 批准号:
2413622 - 财政年份:2024
- 资助金额:
$ 5.54万 - 项目类别:
Standard Grant
CAREER: Semiconductor on Nitride PhoXonic Integrated Circuit (SONIC) Platform for Chip-Scale RF and Optical Signal Processing
职业:用于芯片级射频和光信号处理的氮化物 PhoXonic 集成电路 (SONIC) 平台上的半导体
- 批准号:
2340405 - 财政年份:2024
- 资助金额:
$ 5.54万 - 项目类别:
Continuing Grant
RII Track-4:@NASA: Automating Character Extraction for Taxonomic Species Descriptions Using Neural Networks, Transformer, and Computer Vision Signal Processing Architectures
RII Track-4:@NASA:使用神经网络、变压器和计算机视觉信号处理架构自动提取分类物种描述的字符
- 批准号:
2327168 - 财政年份:2024
- 资助金额:
$ 5.54万 - 项目类别:
Standard Grant
New Signal Design and Processing for Future Vehicular Communications (DRIVE)
未来车辆通信 (DRIVE) 的新信号设计和处理
- 批准号:
EP/X035352/1 - 财政年份:2024
- 资助金额:
$ 5.54万 - 项目类别:
Research Grant
A RadBackCom Approach to Integrated Sensing and Communication: Waveform Design and Receiver Signal Processing
RadBackCom 集成传感和通信方法:波形设计和接收器信号处理
- 批准号:
2335765 - 财政年份:2024
- 资助金额:
$ 5.54万 - 项目类别:
Standard Grant
Pitch Monitor for Picosecond Electron Bunches with BPM Signal Processing with Analog RF circuits
用于皮秒电子束的节距监视器,具有 BPM 信号处理和模拟 RF 电路
- 批准号:
23H03667 - 财政年份:2023
- 资助金额:
$ 5.54万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Signal Processing Along the Auditory Pathway: Changes Following Noise Exposure
沿着听觉通路的信号处理:噪声暴露后的变化
- 批准号:
10536262 - 财政年份:2023
- 资助金额:
$ 5.54万 - 项目类别: